Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Publication year range
1.
Proc Biol Sci ; 290(2010): 20230957, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37909073

ABSTRACT

Recent studies have suggested the presence of moonlight mediated behaviour in avian aerial insectivores, such as swifts. Here, we use the combined analysis of state-of-the-art activity logger data across three swift species, the common, pallid and alpine swifts, to quantify flight height and activity in responses to moonlight-driven crepuscular and nocturnal light conditions. Our results show a significant response in flight heights to moonlight illuminance for common and pallid swifts, i.e. when moon illuminance increased flight height also increased, while a moonlight-driven response is absent in alpine swifts. We show a weak relationship between night-time illuminance-driven responses and twilight ascending behaviour, suggesting a decoupling of both crepuscular and night-time behaviour. We suggest that swifts optimize their flight behaviour to adapt to favourable night-time light conditions, driven by light-responsive and size-dependent vertical insect stratification and weather conditions.


Subject(s)
Birds , Flight, Animal , Animals , Flight, Animal/physiology , Birds/physiology , Insecta
2.
Mov Ecol ; 10(1): 29, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768856

ABSTRACT

BACKGROUND: As a widely distributed and aerial migratory bird, the Common Swift (Apus apus) flies over a wide geographic range in Eurasia and Africa during migration. Although some studies have revealed the migration routes and phenology of European populations, A. a. apus (from hereon the nominate apus), the route used by its East Asian counterpart A. a. pekinensis (from hereon pekinensis) remained a mystery. METHODS: Using light level geolocators, we studied the migration of adult pekinensis breeding in Beijing from 2014 to 2018, and analysed full annual tracks obtained from 25 individuals. In addition, we used the mean monthly precipitation to assess the seasonal variations in humidity for the distribution ranges of the nominate apus and pekinensis. This environmental variable is considered to be critically relevant to their migratory phenology and food resource abundance. RESULTS: Our results show that the swifts perform a round-trip journey of ca 30,000 km each year, representing a detour of 26% in autumn and 15% in spring compared to the shortest route between the breeding site in Beijing and wintering areas in semi-arid south-western Africa. Compared to the nominate apus, pekinensis experiences drier conditions for longer periods of time. Remarkably, individuals from our study population tracked arid habitat along the entire migration corridor leading from a breeding site in Beijing to at least central Africa. In Africa, they explored more arid habitats during non-breeding than the nominate apus. CONCLUSIONS: The migration route followed by pekinensis breeding in Beijing might suggest an adaptation to semi-arid habitat and dry climatic zones during non-breeding periods, and provides a piece of correlative evidence indicating the historical range expansion of the subspecies. This study highlights that the Common Swift may prove invaluable as a model species for studies of migration route formation and population divergence.

3.
Evolution ; 74(10): 2377-2391, 2020 10.
Article in English | MEDLINE | ID: mdl-32885859

ABSTRACT

Spectacular long-distance migration has evolved repeatedly in animals enabling exploration of resources separated in time and space. In birds, these patterns are largely driven by seasonality, cost of migration, and asymmetries in competition leading most often to leapfrog migration, where northern breeding populations winter furthest to the south. Here, we show that the highly aerial common swift Apus apus, spending the nonbreeding period on the wing, instead exhibits a rarely found chain migration pattern, where the most southern breeding populations in Europe migrate to wintering areas furthest to the south in Africa, whereas the northern populations winter to the north. The swifts concentrated in three major areas in sub-Saharan Africa during the nonbreeding period, with substantial overlap of nearby breeding populations. We found that the southern breeding swifts were larger, raised more young, and arrived to the wintering areas with higher seasonal variation in greenness (Normalized Difference Vegetation Index) earlier than the northern breeding swifts. This unusual chain migration pattern in common swifts is largely driven by differential annual timing and we suggest it evolves by prior occupancy and dominance by size in the breeding quarters and by prior occupancy combined with diffuse competition in the winter.


Subject(s)
Animal Migration , Biological Evolution , Birds/genetics , Africa , Animals , Body Size , Clutch Size , Europe
SELECTION OF CITATIONS
SEARCH DETAIL