Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Molecules ; 28(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049805

ABSTRACT

SuFEx chemistry is based on the unique reactivity of the sulfonyl fluoride group with a range of nucleophiles. Accordingly, sulfonyl fluorides label multiple nucleophilic amino acid residues, making these reagents popular in both chemical biology and medicinal chemistry applications. The reactivity of sulfonyl fluorides nominates this warhead chemotype as a candidate for an external, activation-free general labelling tag. Here, we report the synthesis and characterization of a small sulfonyl fluoride library that yielded the 3-carboxybenzenesulfonyl fluoride warhead for tagging tractable targets at nucleophilic residues. Based on these results, we propose that coupling diverse fragments to this warhead would result in a library of sulfonyl fluoride bits (SuFBits), available for screening against protein targets. SuFBits will label the target if it binds to the core fragment, which facilitates the identification of weak fragments by mass spectrometry.


Subject(s)
Amino Acids , Fluorides , Fluorides/chemistry , Amino Acids/chemistry , Sulfinic Acids/chemistry , Mass Spectrometry
2.
Arch Pharm (Weinheim) ; 351(12): e1800184, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30461051

ABSTRACT

An electrophilic fragment library of small heterocycles was developed and characterized in the surrogate GSH-reactivity assay and aqueous stability test that revealed their potential as covalent warheads. Screening the library against MurA from Staphylococcus aureus (MurASA ) and Escherichia coli (MurAEC ) identified heterocyclic fragments with significant inhibitory potency. The validated heterocyclic warhead library might be useful for developing targeted covalent inhibitors for other targets of interest with a new design strategy incorporating heterocyclic electrophiles as warheads.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Heterocyclic Compounds/chemical synthesis , Alkyl and Aryl Transferases/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Escherichia coli/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/drug effects , Structure-Activity Relationship
3.
J Med Chem ; 67(1): 572-585, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38113354

ABSTRACT

Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.


Subject(s)
Histone Deacetylase Inhibitors , Histone Deacetylases , Humans , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Binding Sites , Tandem Mass Spectrometry , Ligands , Repressor Proteins/metabolism
4.
Commun Chem ; 7(1): 168, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085342

ABSTRACT

Fragment screening is a popular strategy of generating viable chemical starting points especially for challenging targets. Although fragments provide a better coverage of chemical space and they have typically higher chance of binding, their weak affinity necessitates highly sensitive biophysical assays. Here, we introduce a screening concept that combines evolutionary optimized fragment pharmacophores with the use of a photoaffinity handle that enables high hit rates by LC-MS-based detection. The sensitivity of our screening protocol was further improved by a target-conjugated photocatalyst. We have designed, synthesized, and screened 100 diazirine-tagged fragments against three benchmark and three therapeutically relevant protein targets of different tractability. Our therapeutic targets included a conventional enzyme, the first bromodomain of BRD4, a protein-protein interaction represented by the oncogenic KRasG12D protein, and the yet unliganded N-terminal domain of the STAT5B transcription factor. We have discovered several fragment hits against all three targets and identified their binding sites via enzymatic digestion, structural studies and modeling. Our results revealed that this protocol outperforms screening traditional fully functionalized and photoaffinity fragments in better exploration of the available binding sites and higher hit rates observed for even difficult targets.

5.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36558935

ABSTRACT

Heterocyclic electrophiles as small covalent fragments showed promising inhibitory activity on the antibacterial target MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase, EC:2.5.1.7). Here, we report the second generation of heterocyclic electrophiles: the quaternized analogue of the heterocyclic covalent fragment library with improved reactivity and MurA inhibitory potency. Quantum chemical reaction barrier calculations, GSH (L-glutathione) reactivity assay, and thrombin counter screen were also used to demonstrate and explain the improved reactivity and selectivity of the N-methylated heterocycles and to compare the two generations of heterocyclic electrophiles.

6.
Drug Discov Today ; 25(6): 983-996, 2020 06.
Article in English | MEDLINE | ID: mdl-32298798

ABSTRACT

Targeted covalent inhibitors and chemical probes have become integral parts of drug discovery approaches. Given the advantages of fragment-based drug discovery, screening electrophilic fragments emerged as a promising alternative to discover and validate novel targets and to generate viable chemical starting points even for targets that are barely tractable. In this review, we present recent principles and considerations in the design of electrophilic fragment libraries from the selection of the appropriate covalent warhead through the design of the covalent fragment to the compilation of the library. We then summarize recent screening methodologies of covalent fragments against surrogate models, proteins, and the whole proteome, or living cells. Finally, we highlight recent drug discovery applications of covalent fragment libraries.


Subject(s)
Small Molecule Libraries/pharmacology , Drug Discovery/methods , Humans , Proteins/metabolism , Proteome/drug effects
7.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153141

ABSTRACT

Drug discovery programs against the antibacterial target UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) have already resulted in covalent inhibitors having small three- and five-membered heterocyclic rings. In the current study, the reactivity of four-membered rings was carefully modulated to obtain a novel family of covalent MurA inhibitors. Screening a small library of cyclobutenone derivatives led to the identification of bromo-cyclobutenaminones as new electrophilic warheads. The electrophilic reactivity and cysteine specificity have been determined in a glutathione (GSH) and an oligopeptide assay, respectively. Investigating the structure-activity relationship for MurA suggests a crucial role for the bromine atom in the ligand. In addition, MS/MS experiments have proven the covalent labelling of MurA at Cys115 and the observed loss of the bromine atom suggests a net nucleophilic substitution as the covalent reaction. This new set of compounds might be considered as a viable chemical starting point for the discovery of new MurA inhibitors.

8.
Nat Commun ; 11(1): 5047, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028810

ABSTRACT

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


Subject(s)
Betacoronavirus/chemistry , Cysteine Endopeptidases/chemistry , Peptide Fragments/chemistry , Viral Nonstructural Proteins/chemistry , Betacoronavirus/enzymology , Binding Sites , Catalytic Domain , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/metabolism , Drug Design , Mass Spectrometry , Models, Molecular , Peptide Fragments/metabolism , Protein Conformation , SARS-CoV-2 , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Static Electricity , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL