Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Geophys Res Atmos ; 123(1): 3-21, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-32818129

ABSTRACT

We conduct a novel comprehensive investigation that seeks to prove the connection between spatial and time scales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies at time scales ranging from 0.5 to 128 days, using wavelet transforms. Then, their degree of spatial representativeness is evaluated on a per time-scale basis by comparison to large-spatial scale datasets (the in situ spatial average, SMOS, AMSR2 and ECMWF). Four methods are used for this: temporal stability analysis (TStab), triple collocation (TC), the percentage of correlated areas (CArea) and a new proposed approach that uses wavelet-based correlations (WCor). We found that the mean of the spatial representativeness values tends to increase with the time scale but so does their dispersion. Locations exhibit poor spatial representativeness at scales below 4 days, while either very good or poor representativeness at seasonal scales. Regarding the methods, TStab cannot be applied to the anomaly series due to their multiple zero-crossings and TC is suitable for week and month scales but not for other scales where datasets cross-correlations are found low. In contrast, WCor and CArea give consistent results at all time-scales. WCor is less sensitive to the spatial sampling density, so it is a robust method that can be applied to sparse networks (1 station per footprint). These results are promising to improve the validation and downscaling of satellite SM series and the optimization of SM networks.

2.
Appl Opt ; 38(36): 7419-30, 1999 Dec 20.
Article in English | MEDLINE | ID: mdl-18324296

ABSTRACT

An algorithm based on the Monte Carlo method is developed to solve the radiative transfer equation in the reflective domain (0.4-4 microm) of the solar spectrum over rugged terrain. This algorithm takes into account relief, spatial heterogeneity, and ground bidirectional reflectance. The method permits the computation of irradiance components at ground level and radiance terms reaching an airborne or satelliteborne sensor. The Monte Carlo method consists of statistically simulating the paths of photons inside the Earth-atmosphere system to reproduce physical phenomena while introducing neither analytical modeling nor assumption. The potentialities of the code are then depicted over different types of landscape, including a seashore, a desert region, and a steep mountainous valley.

3.
Appl Opt ; 39(36): 6830-46, 2000 Dec 20.
Article in English | MEDLINE | ID: mdl-18354698

ABSTRACT

A physical algorithm is developed to solve the radiative transfer problem in the solar reflective spectral domain. This new code, Advanced Modeling of the Atmospheric Radiative Transfer for Inhomogeneous Surfaces (AMARTIS), takes into account the relief, the spatial heterogeneity, and the bidirectional reflectances of ground surfaces. The resolution method consists of first identifying the irradiance and radiance components at ground and sensor levels and then modeling these components separately, the rationale being to find the optimal trade off between accuracy and computation times. The validity of the various assumptions introduced in the AMARTIS model are checked through comparisons with a reference Monte Carlo radiative transfer code for various ground scenes: flat ground with two surface types, a linear sand dune landscape, and an extreme mountainous configuration. The results show a divergence of less than 2% between the AMARTIS code and the Monte Carlo reference code for the total signals received at satellite level. In particular, it is demonstrated that the environmental and topographic effects are properly assessed by the AMARTIS model even for situations in which the effects become dominant.

SELECTION OF CITATIONS
SEARCH DETAIL