Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Am J Transplant ; 16(5): 1421-40, 2016 05.
Article in English | MEDLINE | ID: mdl-26602379

ABSTRACT

In an era where we are becoming more reliant on vulnerable kidneys for transplantation from older donors, there is an urgent need to understand how brain death leads to kidney dysfunction and, hence, how this can be prevented. Using a rodent model of hemorrhagic stroke and next-generation proteomic and metabolomic technologies, we aimed to delineate which key cellular processes are perturbed in the kidney after brain death. Pathway analysis of the proteomic signature of kidneys from brain-dead donors revealed large-scale changes in mitochondrial proteins that were associated with altered mitochondrial activity and morphological evidence of mitochondrial injury. We identified an increase in a number of glycolytic proteins and lactate production, suggesting a shift toward anaerobic metabolism. Higher amounts of succinate were found in the brain death group, in conjunction with increased markers of oxidative stress. We characterized the responsiveness of hypoxia inducible factors and found this correlated with post-brain death mean arterial pressures. Brain death leads to metabolic disturbances in the kidney and alterations in mitochondrial function and reactive oxygen species generation. This metabolic disturbance and alteration in mitochondrial function may lead to further cellular injury. Conditioning the brain-dead organ donor by altering metabolism could be a novel approach to ameliorate this brain death-induced kidney injury.


Subject(s)
Biomarkers/analysis , Brain Death/physiopathology , Kidney/physiopathology , Metabolomics/methods , Oxidative Stress/genetics , Proteomics/methods , Animals , Male , Rats , Rats, Inbred F344 , Signal Transduction
2.
Mol Cell Proteomics ; 10(8): M110.005686, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21474797

ABSTRACT

Urinary proteins have been implicated as inhibitors of kidney stone formation (urolithiasis). As a proximal fluid, prefiltered by the kidneys, urine is an attractive biofluid for proteomic analysis in urologic conditions. However, it is necessary to correct for variations in urinary concentration. In our study, individual urine samples were normalized for this variation by using a total protein to creatinine ratio. Pooled urine samples were compared in two independent experiments. Differences between the urinary proteome of stone formers and nonstone-forming controls were characterized and quantified using label-free nano-ultraperformance liquid chromatography high/low collision energy switching analysis. There were 1063 proteins identified, of which 367 were unique to the stone former groups, 408 proteins were unique to the control pools, and 288 proteins were identified for comparative quantification. Proteins found to be unique in stone-formers were involved in carbohydrate metabolism pathways and associated with disease states. Thirty-four proteins demonstrated a consistent >twofold change between stone formers and controls. For ceruloplasmin, one of the proteins was shown to be more than twofold up-regulated in the stone-former pools, this observation was validated in individuals by enzyme-linked immunosorbent assay. Moreover, in vitro crystallization assays demonstrated ceruloplasmin had a dose-dependent increase on calcium oxalate crystal formation. Taken together, these results may suggest a functional role for ceruloplasmin in urolithiasis.


Subject(s)
Ceruloplasmin/urine , Proteinuria/urine , Proteome/metabolism , Urolithiasis/urine , Adult , Aged , Aged, 80 and over , Amidohydrolases/urine , Amino Acid Sequence , Biomarkers/metabolism , Biomarkers/urine , Calcium Oxalate/chemistry , Case-Control Studies , Ceruloplasmin/chemistry , Crystallization , Female , Humans , Male , Middle Aged , Peptide Fragments/chemistry , Proteinuria/metabolism , Proteome/chemistry , Proteomics , Tandem Mass Spectrometry , Urolithiasis/metabolism , Young Adult
3.
J Exp Med ; 185(4): 629-40, 1997 Feb 17.
Article in English | MEDLINE | ID: mdl-9034142

ABSTRACT

We tested for antigen recognition and T cell receptor (TCR)-ligand binding 12 peptide derivative variants on seven H-2Kd-restricted cytotoxic T lymphocytes (CTL) clones specific for a bifunctional photoreactive derivative of the Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI). The derivative contained iodo-4-azidosalicylic acid in place of PbCS S-252 and 4-azidobenzoic acid on PbCS K-259. Selective photoactivation of the N-terminal photoreactive group allowed crosslinking to Kd molecules and photoactivation of the orthogonal group to TCR. TCR photoaffinity labeling with covalent Kd-peptide derivative complexes allowed direct assessment of TCR-ligand binding on living CTL. In most cases (over 80%) cytotoxicity (chromium release) and TCR-ligand binding differed by less than fivefold. The exceptions included (a) partial TCR agonists (8 cases), for which antigen recognition was five-tenfold less efficient than TCR-ligand binding, (b) TCR antagonists (2 cases), which were not recognized and capable of inhibiting recognition of the wild-type conjugate, (c) heteroclitic agonists (2 cases), for which antigen recognition was more efficient than TCR-ligand binding, and (d) one partial TCR agonist, which activated only Fas (C1)95), but not perforin/granzyme-mediated cytotoxicity. There was no correlation between these divergences and the avidity of TCR-ligand binding, indicating that other factors than binding avidity determine the nature of the CTL response. An unexpected and novel finding was that CD8-dependent clones clearly incline more to TCR antagonism than CD8-independent ones. As there was no correlation between CD8 dependence and the avidity of TCR-ligand binding, the possibility is suggested that CD8 plays a critical role in aberrant CTL function.


Subject(s)
H-2 Antigens/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Cytotoxic/immunology , Affinity Labels , Amino Acid Sequence , CD8-Positive T-Lymphocytes , Cell Line , Clone Cells , Membrane Glycoproteins/immunology , Molecular Sequence Data , Peptides/chemistry , Perforin , Pore Forming Cytotoxic Proteins , Receptors, Antigen, T-Cell/antagonists & inhibitors , Receptors, Antigen, T-Cell/immunology , fas Receptor/immunology
4.
Phys Rev Lett ; 104(4): 047001, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-20366731

ABSTRACT

We have produced graphene sheets decorated with a nonpercolating network of nanoscale tin clusters. These metal clusters both efficiently dope the graphene substrate and induce long-range superconducting correlations. We find that despite structural inhomogeneity on mesoscopic length scales (10-100 nm), this material behaves electronically as a homogenous dirty superconductor with a field-effect tuned Berezinskii-Kosterlitz-Thouless transition. Our facile self-assembly method establishes graphene as an ideal tunable substrate for studying induced two-dimensional electronic systems at fixed disorder and our technique can readily be extended to other order parameters such as magnetism.

5.
Science ; 368(6493): 897-901, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32381591

ABSTRACT

Cytotoxic T lymphocytes (CTLs) kill infected and cancerous cells. We detected transfer of cytotoxic multiprotein complexes, called supramolecular attack particles (SMAPs), from CTLs to target cells. SMAPs were rapidly released from CTLs and were autonomously cytotoxic. Mass spectrometry, immunochemical analysis, and CRISPR editing identified a carboxyl-terminal fragment of thrombospondin-1 as an unexpected SMAP component that contributed to target killing. Direct stochastic optical reconstruction microscopy resolved a cytotoxic core surrounded by a thrombospondin-1 shell of ~120 nanometer diameter. Cryo-soft x-ray tomography analysis revealed that SMAPs had a carbon-dense shell and were stored in multicore granules. We propose that SMAPs are autonomous extracellular killing entities that deliver cytotoxic cargo targeted by the specificity of shell components.


Subject(s)
Cytotoxicity, Immunologic , Granzymes/metabolism , Multiprotein Complexes/metabolism , Perforin/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Thrombospondin 1/metabolism , CRISPR-Cas Systems , Exocytosis , Gene Editing , Humans , K562 Cells , Thrombospondin 1/genetics , Tomography, X-Ray
6.
Article in English | MEDLINE | ID: mdl-32659386

ABSTRACT

OBJECTIVES: Central nervous system (CNS) infections are common causes of morbidity and mortality worldwide. We aimed to discover protein biomarkers that could rapidly and accurately identify the likely cause of the infections, essential for clinical management and improving outcome. METHODS: We applied liquid chromatography tandem mass spectrometry on 45 cerebrospinal fluid (CSF) samples from a cohort of adults with and without CNS infections to discover potential diagnostic biomarkers. We then validated the diagnostic performance of a selected biomarker candidate in an independent cohort of 364 consecutively treated adults with CNS infections admitted to a referral hospital in Vietnam. RESULTS: In the discovery cohort, we identified lipocalin 2 (LCN2) as a potential biomarker of bacterial meningitis (BM) other than tuberculous meningitis. The analysis of the validation cohort showed that LCN2 could discriminate BM from other CNS infections (including tuberculous meningitis, cryptococcal meningitis and virus/antibody-mediated encephalitis), with sensitivity of 0.88 (95% confident interval (CI), 0.77-0.94), specificity of 0.91 (95% CI, 0.88-0.94) and diagnostic odds ratio of 73.8 (95% CI, 31.8-171.4). LCN2 outperformed other CSF markers (leukocytes, glucose, protein and lactate) commonly used in routine care worldwide. The combination of LCN2, CSF leukocytes, glucose, protein and lactate resulted in the highest diagnostic performance for BM (area under the receiver operating characteristics curve, 0.96; 95% CI, 0.93-0.99). Data are available via ProteomeXchange with identifier PXD020510. CONCLUSIONS: LCN2 is a sensitive and specific biomarker for discriminating BM from a broad spectrum of other CNS infections. A prospective study is needed to assess the diagnostic utility of LCN2 in the diagnosis and management of CNS infections.

7.
Nat Commun ; 9(1): 4783, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30429478

ABSTRACT

Citrullination of proteins, a post-translational conversion of arginine residues to citrulline, is recognized in rheumatoid arthritis, but largely undocumented in cancer. Here we show that citrullination of the extracellular matrix by cancer cell derived peptidylarginine deiminase 4 (PAD4) is essential for the growth of liver metastases from colorectal cancer (CRC). Using proteomics, we demonstrate that liver metastases exhibit higher levels of citrullination and PAD4 than unaffected liver, primary CRC or adjacent colonic mucosa. Functional significance for citrullination in metastatic growth is evident in murine models where inhibition of citrullination substantially reduces liver metastatic burden. Additionally, citrullination of a key matrix component collagen type I promotes greater adhesion and decreased migration of CRC cells along with increased expression of characteristic epithelial markers, suggesting a role for citrullination in promoting mesenchymal-to-epithelial transition and liver metastasis. Overall, our study reveals the potential for PAD4-dependant citrullination to drive the progression of CRC liver metastasis.


Subject(s)
Citrullination/genetics , Colorectal Neoplasms/genetics , Extracellular Matrix/metabolism , Liver Neoplasms/genetics , Protein-Arginine Deiminases/genetics , Animals , Cell Adhesion , Cell Movement , Collagen Type I/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , HCT116 Cells , HT29 Cells , Humans , Hydrolases/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Mice , Neoplasm Metastasis , Protein-Arginine Deiminase Type 4
9.
Chem Biol ; 8(9): 913-29, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11564559

ABSTRACT

BACKGROUND: The 26S proteasome is responsible for most cytosolic proteolysis, and is an important protease in major histocompatibility complex class I-mediated antigen presentation. Constitutively expressed proteasomes from mammalian sources possess three distinct catalytically active species, beta1, beta2 and beta5, which are replaced in the gamma-interferon-inducible immunoproteasome by a different set of catalytic subunits, beta1i, beta2i and beta5i, respectively. Based on preferred cleavage of short fluorogenic peptide substrates, activities of the proteasome have been assigned to individual subunits and classified as 'chymotryptic-like' (beta5), 'tryptic-like' (beta2) and 'peptidyl-glutamyl peptide hydrolyzing' (beta1). Studies with protein substrates indicate a far more complicated, less strict cleavage preference. We reasoned that inhibitors of extended size would give insight into the extent of overlapping substrate specificity of the individual activities and subunits. RESULTS: A new class of proteasome inhibitors, considerably extended in comparison with the commonly used fluorescent substrates and peptide-based inhibitors, has been prepared. Application of the safety catch resin allowed the generation of the target compounds using a solid phase protocol. Evaluation of the new compounds revealed a set of highly potent proteasome inhibitors that target all individual active subunits with comparable affinity, unlike the other inhibitors described to date. Modification of the most active compound, adamantane-acetyl-(6-aminohexanoyl)(3)-(leucinyl)(3)-vinyl-(methyl)-sulfone (AdaAhx(3)L(3)VS), itself capable of proteasome inhibition in living cells, afforded a new set of radio- and affinity labels. CONCLUSIONS: N-terminal extension of peptide vinyl sulfones has a profound influence on both their efficiency and selectivity as proteasome inhibitors. Such extensions greatly enhance inhibition and largely obliterate selectivity towards the individual catalytic activities. We conclude that for the interaction with larger substrates, there appears to be less discrimination of different substrate sequences for the catalytic activities than is normally assumed based on the use of small peptide-based substrates and inhibitors. The compounds described here are readily accessible synthetically, and are more potent inhibitors in living cells than their shorter peptide vinyl sulfone counterparts.


Subject(s)
Acetylcysteine/analogs & derivatives , Enzyme Inhibitors/chemical synthesis , Multienzyme Complexes/antagonists & inhibitors , Acetylcysteine/chemistry , Catalytic Domain , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Enzyme Inhibitors/chemistry , HeLa Cells , Humans , Multienzyme Complexes/chemistry , Oligopeptides/chemistry , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Peptides/chemical synthesis , Peptides/pharmacology , Proteasome Endopeptidase Complex , Sulfones/chemistry
10.
Oncogene ; 34(36): 4713-22, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-25486436

ABSTRACT

Hypoxia is a common feature of locally advanced breast cancers that is associated with increased metastasis and poorer survival. Stabilisation of hypoxia-inducible factor-1α (HIF1α) in tumours causes transcriptional changes in numerous genes that function at distinct stages of the metastatic cascade. We demonstrate that expression of RIOK3 (RIght Open reading frame kinase 3) was increased during hypoxic exposure in an HIF1α-dependent manner. RIOK3 was localised to distinct cytoplasmic aggregates in normoxic cells and underwent redistribution to the leading edge of the cell in hypoxia with a corresponding change in the organisation of the actin cytoskeleton. Depletion of RIOK3 expression caused MDA-MB-231 to become elongated and this morphological change was due to a loss of protraction at the trailing edge of the cell. This phenotypic change resulted in reduced cell migration in two-dimensional cultures and inhibition of cell invasion through three-dimensional extracellular matrix. Proteomic analysis identified interactions of RIOK3 with actin and several actin-binding factors including tropomyosins (TPM3 and TPM4) and tropomodulin 3. Depletion of RIOK3 in cells resulted in fewer and less organised actin filaments. Analysis of these filaments showed reduced association of TPM3, particularly during hypoxia, suggesting that RIOK3 regulates actin filament specialisation. RIOK3 depletion reduced the dissemination of MDA-MB-231 cells in both a zebrafish model of systemic metastasis and a mouse model of pulmonary metastasis. These findings demonstrate that RIOK3 is necessary for maintaining actin cytoskeletal organisation required for migration and invasion, biological processes that are necessary for hypoxia-driven metastasis.


Subject(s)
Actin Cytoskeleton/genetics , Breast Neoplasms/genetics , Neoplasm Invasiveness/genetics , Protein Serine-Threonine Kinases/biosynthesis , Animals , Breast Neoplasms/pathology , Cell Hypoxia/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Protein Serine-Threonine Kinases/genetics , Tropomyosin/genetics , Zebrafish
11.
Phys Rev Lett ; 99(15): 155901, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17995185

ABSTRACT

We report a novel nanoscale thermal platform compatible with extreme temperature operation and real-time high-resolution transmission electron microscopy. Applied to multiwall carbon nanotubes, we find atomic-scale stability to 3200 K, demonstrating that carbon nanotubes are more robust than graphite or diamond. Even at these thermal extremes, nanotubes maintain 10% of their peak thermal conductivity and support electrical current densities approximately 2 x 10{8} A/cm{2}. We also apply this platform to determine the diameter dependence of the melting temperature of gold nanocrystals down to three nanometers.

12.
EMBO J ; 20(18): 5187-96, 2001 Sep 17.
Article in English | MEDLINE | ID: mdl-11566882

ABSTRACT

A C-terminally modified ubiquitin (Ub) derivative, ubiquitin vinyl sulfone (UbVS), was synthesized as an active site-directed probe that irreversibly modifies a subset of Ub C-terminal hydrolases (UCHs) and Ub-specific processing proteases (UBPs). Specificity of UbVS for deubiquitylating enzymes (DUBs) is demonstrated not only by inhibition of [(125)I]UbVS labeling with N-ethylmaleimide and Ub aldehyde, but also by genetic analysis. [(125)I]UbVS modifies six of the 17 known and putative yeast deubiquitylating enzymes (Yuh1p, Ubp1p, Ubp2p, Ubp6p, Ubp12p and Ubp15p), as revealed by analysis of corresponding mutant strains. In mammalian cells, greater numbers of polypeptides are labeled, most of which are likely to be DUBs. Using [(125)I]UbVS as a probe, we report the association of an additional DUB with the mammalian 26S proteasome. In addition to the 37 kDa enzyme reported to be part of the 19S cap, we identified USP14, a mammalian homolog of yeast Ubp6p, as being bound to the proteasome. Remarkably, labeling of 26S-associated USP14 with [(125)I]UbVS is increased when proteasome function is impaired, suggesting functional coupling between the activities of USP14 and the proteasome.


Subject(s)
Endopeptidases/metabolism , Peptide Hydrolases/metabolism , Proteasome Endopeptidase Complex , Saccharomyces cerevisiae Proteins , Sulfones/chemistry , Ubiquitins/chemistry , Ubiquitins/metabolism , Yeasts/enzymology , 3T3 Cells , Animals , Binding Sites , Cell Extracts/chemistry , Cell Line , Enzyme Inhibitors/pharmacology , Fungal Proteins/analysis , Fungal Proteins/genetics , Gene Deletion , Iodine Radioisotopes , Macromolecular Substances , Mice , Oligopeptides/pharmacology , Sulfones/chemical synthesis , Sulfones/pharmacology , Thiolester Hydrolases/analysis , Ubiquitin Thiolesterase , Ubiquitins/analogs & derivatives , Ubiquitins/chemical synthesis
13.
Proc Natl Acad Sci U S A ; 97(18): 9990-5, 2000 Aug 29.
Article in English | MEDLINE | ID: mdl-10954757

ABSTRACT

Cytosolic proteolysis is carried out predominantly by the proteasome. We show that a large oligopeptidase, tripeptidylpeptidase II (TPPII), can compensate for compromised proteasome activity. Overexpression of TPPII is sufficient to prevent accumulation of polyubiquitinated proteins and allows survival of EL-4 cells at otherwise lethal concentrations of the covalent proteasome inhibitor NLVS (NIP-leu-leu-leu-vinylsulfone). Elevated TPPII activity also partially restores peptide loading of MHC molecules. Purified proteasomes from adapted cells lack the chymotryptic-like activity, but still degrade longer peptide substrates via residual activity of their Z subunits. However, growth of adapted cells depends on induction of other proteolytic activities. Therefore, cytosolic oligopeptidases such as TPPII normalize rates of intracellular protein breakdown required for normal cellular function and viability.


Subject(s)
Cysteine Endopeptidases/metabolism , Multienzyme Complexes/metabolism , Peptide Hydrolases/metabolism , Ubiquitins/metabolism , Amino Acid Sequence , Animals , Caspases/metabolism , Cysteine Endopeptidases/isolation & purification , Cytosol/enzymology , Histocompatibility Antigens Class I/metabolism , Kinetics , Lymphoma , Mice , Molecular Sequence Data , Multienzyme Complexes/isolation & purification , Peptide Fragments/metabolism , Proteasome Endopeptidase Complex , Recombinant Proteins/metabolism , Substrate Specificity , Transfection , Trypsin/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL