Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Arch Microbiol ; 204(4): 205, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35266047

ABSTRACT

Over half of the organic carbon on Earth's surface is trapped in marine sediment as methane hydrates. Ocean warming causes hydrate dissociation and methane leakage to the water column, rendering the characterization of microbes from hydrate depositions a pressing matter. Through genomic, phylogenetic, and biochemical assays, we characterize the first microorganisms isolated from the Rio Grande Cone (Brazil), reservoir responsible for massive methane releases to the water column. From sediment harboring rich benthic communities, we obtained 43 strains of Brevibacillus sp., Paenibacillus sp. and groups of Bacillus sp. Methane-enriched samples yielded strains of the Pseudomonas fluorescens complex, exhibiting fluorescent siderophore production and broad multi-carbon catabolism. Genomic characterization of a novel Pseudomonas sp. strain indicated 32 genes not identified in the closest related type-species, including proteins involved with mercury resistance. Our results provide phylogenetic and genomic insights on the first bacterial isolates retrieved from a poorly explored region of the South Atlantic Ocean.


Subject(s)
Bacteria , Methane , Genomics , Geologic Sediments/microbiology , Methane/metabolism , Phylogeny
2.
Waste Manag ; 141: 125-135, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35114563

ABSTRACT

Studies on the degradation dynamics of landfill leachate indicate that the microbial community profile is a valuable and sensitive tool for landfill monitoring programs. Although knowledge about the microbial community can improve the efficiency of leachate treatment systems, little is known about the microbial profile changes that occur throughout the leachate attenuation process. In the present work, an exploratory analysis of the microbial community profile of the MSW leachate treatment system in the municipality of Osório (Brazil) was conducted. In this way, a comprehensive analysis of chemical parameters, isotopic signature and microbial profile data were applied to monitor the changes in the structure of the microbial community throughout the leachate attenuation process and to describe the relationship between the microbial community structure and the attenuation of chemical and isotopic parameters. From data analysis, it was possible to assess the microbial community structure and relate it to the attenuation of chemical and isotopic parameters. Based on massive parallel 16S rRNA gene sequencing, it was possible to observe that each leachate treatment unit has a specific microbial consortium, reflecting the adaptation of different microorganisms to changes in leachate characteristics throughout treatment. From our results, we concluded that the structure of the microbial community is sensitive to the leachate composition and can be applied to study the municipal solid waste management system.

3.
Heliyon ; 6(8): e04778, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32923720

ABSTRACT

In November 2015, two iron ore tailing dams collapsed in the city of Mariana, Brazil. The dams' collapse generated a wave of approximately 50 million m3 of a mixture of mining waste and water. It was a major environmental tragedy in Brazilian history, which damaged rivers, and cities 660 km away in the Doce River basin until it reached the ocean coast. Shortly after the incident, several reports informed that the concentration of metals in the water was above acceptable legal limits under Brazilian laws. Here the microbial communities in samples of water, mud, foam, and rhizosphere of Eichhornia from Doce River were analyzed for 16S and 18S rRNA-based amplicon sequencing, along with microbial isolation, chemical and mineralogical analyses. Samples were collected one month and thirteen months after the collapse. Prokaryotic communities from mud shifted drastically over time (33% Bray-Curtis similarity), while water samples were more similar (63% Bray-Curtis similarity) in the same period. After 12 months, mud samples remained with high levels of heavy metals and a reduction in the diversity of microeukaryotes was detected. Amoebozoans increased in mud samples, reaching 49% of microeukaryote abundance, with Discosea and Lobosa groups being the most abundant. The microbial communities' structure in mud samples changed adapting to the new environment condition. The characterization of microbial communities and metal-tolerant organisms from such impacted environments is essential for understanding the ecological consequences of massive anthropogenic impacts and strategies for the restoration of contaminated sites such as the Doce River.

4.
Waste Manag ; 76: 591-605, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29459205

ABSTRACT

Leachate produced during an organic matter decomposition process has a complex composition and can cause contamination of surface and groundwaters adjacent to a landfill area. The monitoring of these areas is extremely important for the characterization of the leachate produced and to avoid or mitigate environmental damages. Thus, the present study has the objective of monitoring the area of a Brazilian landfill using conventional parameters (dissolved metals and anions in water) and alternative, stable carbon isotopes parameters (δ13C of dissolved organic and inorganic carbons in water) in addition to multivariate analysis techniques. The use of conventional and alternative parameters together with multivariate analysis showed that cells of the residues are at different phases of stabilization of the organic matter and probably already at C3 of the methanogenic phase of decomposition. In addition, the data showed that organic matter stabilization ponds present in the landfill are efficient and improve the quality of the leachate. Enrichment of the heavy 13C isotope in both surface and groundwater suggested contamination in two sampling sites.


Subject(s)
Environmental Monitoring , Waste Disposal Facilities , Brazil , Carbon , Carbon Isotopes , Multivariate Analysis , Refuse Disposal , Water Pollutants, Chemical
5.
Environ Sci Pollut Res Int ; 24(26): 21398-21411, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28744679

ABSTRACT

In Brazil, landfills are commonly used as a method for the final disposal of waste that is compliant with the legislation. This technique, however, presents a risk to surface water and groundwater resources, owing to the leakage of metals, anions, and organic compounds. The geochemical monitoring of water resources is therefore extremely important, since the leachate can compromise the quality and use of surface water and groundwater close to landfills. In this paper, the results of analyses of metals, anions, ammonia, and physicochemical parameters were used to identify possible contamination of surface water and groundwater in a landfill area. A statistical multivariate approach was used. The values found for alkali metals, nitrate, and chloride indicate contamination in the regional groundwater and, moreover, surface waters also show variation when compared to the other background points, mainly for ammonia. Thus, the results of this study evidence the landfill leachate influence on the quality of groundwater and surface water in the study area.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Water Resources , Ammonia/analysis , Brazil , Metals/analysis , Refuse Disposal/methods
SELECTION OF CITATIONS
SEARCH DETAIL