Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Proc Natl Acad Sci U S A ; 120(29): e2221249120, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37410813

ABSTRACT

Asynchronous skeletal muscle degeneration/regeneration is a hallmark feature of Duchenne muscular dystrophy (DMD); however, traditional -omics technologies that lack spatial context make it difficult to study the biological mechanisms of how asynchronous regeneration contributes to disease progression. Here, using the severely dystrophic D2-mdx mouse model, we generated a high-resolution cellular and molecular spatial atlas of dystrophic muscle by integrating spatial transcriptomics and single-cell RNAseq datasets. Unbiased clustering revealed nonuniform distribution of unique cell populations throughout D2-mdx muscle that were associated with multiple regenerative timepoints, demonstrating that this model faithfully recapitulates the asynchronous regeneration observed in human DMD muscle. By probing spatiotemporal gene expression signatures, we found that propagation of inflammatory and fibrotic signals from locally damaged areas contributes to widespread pathology and that querying expression signatures within discrete microenvironments can identify targetable pathways for DMD therapy. Overall, this spatial atlas of dystrophic muscle provides a valuable resource for studying DMD disease biology and therapeutic target discovery.


Subject(s)
Muscle, Skeletal , Muscular Dystrophy, Duchenne , Animals , Mice , Humans , Muscle, Skeletal/metabolism , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/metabolism , Disease Progression , Disease Models, Animal
2.
Mol Metab ; 34: 72-84, 2020 04.
Article in English | MEDLINE | ID: mdl-32180561

ABSTRACT

OBJECTIVE: The liver is regularly exposed to changing metabolic and inflammatory environments. It must sense and adapt to metabolic need while balancing resources required to protect itself from insult. Peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α) is a transcriptional coactivator expressed as multiple, alternatively spliced variants transcribed from different promoters that coordinate metabolic adaptation and protect against inflammation. It is not known how PGC-1α integrates extracellular signals to balance metabolic and anti-inflammatory outcomes. METHODS: Primary mouse hepatocytes were used to evaluate the role(s) of different PGC-1α proteins in regulating hepatic metabolism and inflammatory signaling downstream of tumor necrosis factor alpha (TNFα). Gene expression and signaling analysis were combined with biochemical measurement of apoptosis using gain- and loss-of-function in vitro and in vivo. RESULTS: Hepatocytes expressed multiple isoforms of PGC-1α, including PGC-1α4, which microarray analysis showed had common and isoform-specific functions linked to metabolism and inflammation compared with canonical PGC-1α1. Whereas PGC-1α1 primarily impacted gene programs of nutrient metabolism and mitochondrial biology, TNFα signaling showed several pathways related to innate immunity and cell death downstream of PGC-1α4. Gain- and loss-of-function models illustrated that PGC-1α4 uniquely enhanced expression of anti-apoptotic gene programs and attenuated hepatocyte apoptosis in response to TNFα or lipopolysaccharide (LPS). This was in contrast to PGC-1α1, which decreased the expression of a wide inflammatory gene network but did not prevent hepatocyte death in response to cytokines. CONCLUSIONS: PGC-1α variants have distinct, yet complementary roles in hepatic responses to metabolism and inflammation, and we identify PGC-1α4 as an important mitigator of apoptosis.


Subject(s)
Apoptosis , Hepatocytes/metabolism , Inflammation/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Cell Line , Female , Hepatocytes/pathology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/deficiency , Protein Isoforms/deficiency , Protein Isoforms/metabolism
3.
Endocrinology ; 159(2): 853-865, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29186342

ABSTRACT

Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) is a highly conserved transcriptional coactivator enriched in metabolically active tissues including liver, adipose, pancreas, and muscle. It plays a role in regulating whole body energy metabolism and its deregulation has been implicated in type 2 diabetes (T2D). A single nucleotide variant of the PPARGC1A gene (rs8192678) is associated with T2D susceptibility, relative risk of obesity and insulin resistance, and lower indices of ß cell function. This common polymorphism is within a highly conserved region of the bioactive protein and leads to a single amino acid substitution (glycine 482 to serine). Its prevalence and effects on metabolic parameters appear to vary depending on factors including ethnicity and sex, suggesting important interactions between genetics and cultural/environmental factors and associated disease risk. Interestingly, carriers of the serine allele respond better to some T2D interventions, illustrating the importance of understanding functional impacts of genetic variance on PGC-1α when targeting this pathway for personalized medicine. This review summarizes a growing body of literature surrounding possible links between the PGC-1α Gly482Ser single nucleotide polymorphism and diabetes, with focus on key clinical findings, affected metabolic systems, potential molecular mechanisms, and the influence of geographical or ethnic background on associated risk.


Subject(s)
Metabolic Diseases/genetics , Mutation, Missense , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Polymorphism, Single Nucleotide , Amino Acid Substitution , Diabetes Mellitus, Type 2/genetics , Genetic Linkage , Genetic Predisposition to Disease , Glycine/genetics , Humans , Insulin Resistance/genetics , Obesity/genetics , Serine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL