Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Chem Inf Model ; 63(15): 4560-4573, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37432764

ABSTRACT

The skew and shape of the molecular weight distribution (MWD) of polymers have a significant impact on polymer physical properties. Standard summary metrics statistically derived from the MWD only provide an incomplete picture of the polymer MWD. Machine learning (ML) methods coupled with high-throughput experimentation (HTE) could potentially allow for the prediction of the entire polymer MWD without information loss. In our work, we demonstrate a computer-controlled HTE platform that is able to run up to 8 unique variable conditions in parallel for the free radical polymerization of styrene. The segmented-flow HTE system was equipped with an inline Raman spectrometer and offline size exclusion chromatography (SEC) to obtain time-dependent conversion and MWD, respectively. Using ML forward models, we first predict monomer conversion, intrinsically learning varying polymerization kinetics that change for each experimental condition. In addition, we predict entire MWDs including the skew and shape as well as SHAP analysis to interpret the dependence on reagent concentrations and reaction time. We then used a transfer learning approach to use the data from our high-throughput flow reactor to predict batch polymerization MWDs with only three additional data points. Overall, we demonstrate that the combination of HTE and ML provides a high level of predictive accuracy in determining polymerization outcomes. Transfer learning can allow exploration outside existing parameter spaces efficiently, providing polymer chemists with the ability to target the synthesis of polymers with desired properties.


Subject(s)
Polymers , Molecular Weight , Polymerization , Polymers/chemistry
2.
Proc Natl Acad Sci U S A ; 117(11): 5671-5679, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32127482

ABSTRACT

Microfluidic tools and techniques for manipulating fluid droplets have become core to many scientific and technological fields. Despite the plethora of existing approaches to fluidic manipulation, non-Newtonian fluid phenomena are rarely taken advantage of. Here we introduce embedded droplet printing-a system and methods for the generation, trapping, and processing of fluid droplets within yield-stress fluids, materials that exhibit extreme shear thinning. This technique allows for the manipulation of droplets under conditions that are simply unattainable with conventional microfluidic methods, namely the elimination of exterior influences including convection and solid boundaries. Because of this, we believe embedded droplet printing approaches an ideal for the experimentation, processing, or observation of many samples in an "absolutely quiescent" state, while also removing some troublesome aspects of microfluidics including the use of surfactants and the complexity of device manufacturing. We characterize a model material system to understand the process of droplet generation inside yield-stress fluids and develop a nascent set of archetypal operations that can be performed with embedded droplet printing. With these principles and tools, we demonstrate the benefits and versatility of our method, applying it toward the diverse applications of pharmaceutical crystallization, microbatch chemical reactions, and biological assays.

3.
Mol Pharm ; 19(11): 4345-4356, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36268657

ABSTRACT

Co-processing active pharmaceutical ingredients (APIs) with excipients is a promising particle engineering technique to improve the API physical properties, which can lead to more robust downstream drug product manufacturing and improved drug product attributes. Excipients provide control over critical API attributes like particle size and solid-state outcomes. Eudragit E100 is a widely used polymeric excipient to modulate drug release. Being cationic, it is primarily employed as a precipitation inhibitor to stabilize amorphous solid dispersions. In this work, we demonstrate how co-processing of E100 with naproxen (NPX) (a model hydrophobic API) into monodisperse emulsions via droplet microfluidics followed by solidification via solvent evaporation allows the facile fabrication of compact, monodisperse, and spherical particles with an expanded range of solid-state outcomes spanning from amorphous to crystalline forms. Low E100 concentrations (≤26% w/w) yield crystalline microparticles with a stable NPX polymorph distributed uniformly across the matrix at a high drug loading (∼89% w/w). Structurally, E100 incorporation reduces the size of primary particles comprising the co-processed microparticles in comparison to neat API microparticles made using the same technique and the as-received API powder. This reduction in primary particle size translates into an increased internal porosity of the co-processed microparticles, with specific surface area and pore volume ∼9 times higher than the neat API microparticles. These E100-enabled structural modifications result in faster drug release in acidic media compared to neat API microparticles. Additionally, E100-NPX microparticles have a significantly improved flowability compared to neat API microparticles and as-received API powder. Overall, this study demonstrates a facile microfluidics-based co-processing method that broadly expands the range of solid-state outcomes obtainable with E100 as an excipient, with multiscale control over the key attributes and performance of hydrophobic API-laden microparticles.


Subject(s)
Chemistry, Pharmaceutical , Excipients , Excipients/chemistry , Chemistry, Pharmaceutical/methods , Powders , Solubility , Microfluidics , Naproxen/chemistry , Particle Size , Drug Compounding/methods
4.
Pharm Res ; 39(2): 411-421, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35119593

ABSTRACT

PURPOSE: Industrial implementation of continuous oral solid dosage form manufacturing has been impeded by the poor powder flow properties of many active pharmaceutical ingredients (APIs). Microfluidic droplet-based particle synthesis is an emerging particle engineering technique that enables the production of neat or composite microparticles with precise control over key attributes that affect powder flowability, such as particle size distribution, particle morphology, composition, and the API's polymorphic form. However, the powder properties of these microparticles have not been well-studied due to the limited mass throughputs of available platforms. In this work, we produce spherical API and API-composite microparticles at high mass throughputs, enabling characterization and comparison of the bulk powder flow properties of these materials and greater understanding of how particle-scale attributes correlate with powder rheology. METHODS: A multi-channel emulsification device and an extractive droplet-based method are harnessed to synthesize spherical API and API-excipient particles of artemether. As-received API and API crystallized in the absence of droplet confinement are used as control cases. Particle attributes are characterized for each material and correlated with a comprehensive series of powder rheology tests. RESULTS: The droplet-based processed artemether particles are observed to be more flowable, less cohesive, and less compressible than conventionally synthesized artemether powder. Co-processing the API with polycaprolactone to produce composite microparticles reduces the friction of the powder on stainless steel, a common equipment material. CONCLUSIONS: Droplet-based extractive solidification is an attractive particle engineering technique for improving powder processing and may aid in the implementation of continuous solid dosage form manufacturing.


Subject(s)
Antimalarials/chemistry , Artemether/chemistry , Excipients/chemistry , Microfluidic Analytical Techniques , Polyesters/chemistry , Crystallization , Drug Compounding , Emulsions , Friction , Powders , Rheology
5.
Mol Pharm ; 17(7): 2232-2244, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32392068

ABSTRACT

Optimized physical properties (e.g., bulk, surface/interfacial, and mechanical properties) of active pharmaceutical ingredients (APIs) are key to the successful integration of drug substance and drug product manufacturing, robust drug product manufacturing operations, and ultimately to attaining consistent drug product critical quality attributes. However, an appreciable number of APIs have physical properties that cannot be managed via routes such as form selection, adjustments to the crystallization process parameters, or milling. Approaches to control physical properties in innovative ways offer the possibility of providing additional and unique opportunities to control API physical properties for both batch and continuous drug product manufacturing, ultimately resulting in simplified and more robust pharmaceutical manufacturing processes. Specifically, diverse opportunities to significantly enhance API physical properties are created if allowances are made for generating co-processed APIs by introducing nonactive components (e.g., excipients, additives, carriers) during drug substance manufacturing. The addition of a nonactive coformer during drug substance manufacturing is currently an accepted approach for cocrystals, and it would be beneficial if a similar allowance could be made for other nonactive components with the ability to modify the physical properties of the API. In many cases, co-processed APIs could enable continuous direct compression for small molecules, and longer term, this approach could be leveraged to simplify continuous end-to-end drug substance to drug product manufacturing processes for both small and large molecules. As with any novel technology, the regulatory expectations for co-processed APIs are not yet clearly defined, and this creates challenges for commercial implementation of these technologies by the pharmaceutical industry. The intent of this paper is to highlight the opportunities and growing interest in realizing the benefits of co-processed APIs, exemplified by a body of academic research and industrial examples. This work will highlight reasons why co-processed APIs would best be considered as drug substances from a regulatory perspective and emphasize the areas where regulatory strategies need to be established to allow for commercialization of innovative approaches in this area.


Subject(s)
Drug Compounding/methods , Drug Industry/methods , Pharmaceutical Preparations/chemistry , Chemical Precipitation , Chemistry, Pharmaceutical/methods , Crystallization , Drug Carriers/chemistry , Excipients/chemistry , Flavoring Agents/chemistry , Particle Size , Quality Control
7.
Phys Chem Chem Phys ; 19(34): 23229-23238, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28825757

ABSTRACT

Surface re-organization in nanodimensional fluoride (LiF and BaF2) thin films is observed under dense electronic excitation produced by swift heavy ion (SHI) irradiation. The irradiation was performed at an angle of less than 15° with respect to the film surface while keeping the sample at liquid nitrogen temperature. The surface of the irradiated samples was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM) complemented by energy dispersive X-ray spectroscopy (EDX). Detailed analyses indicate that the surface starts cracking at lower fluence. With an increase in the ion fluence, the materials shrinking and surface re-structuring lead to lamellae periodic structures. The average width of the wall decreases, while the separation and the height of the structures increase with the fluence. The composition of the lamellae walls and the gap in between were analyzed by EDX. At the highest fluence of irradiation, a strong signal of the substrate and negligible signals of F and Ba are observed between the walls of the lamellae structures, which shows that the entire deposited material is removed and the Si substrate is completely exposed to the ion beam. It is also observed that the substrate remains unaffected by SHI irradiation and does not undergo any structural transformation as evident by cross-sectional SEM micrographs. Such surface re-organization is not expected in fluoride thin films due to their non-amorphizable nature even at very high fluence SHI irradiation. The concept of grain rotation under SHI irradiation is used to explain the re-organization phenomena in such non-amorphizable materials.

8.
Phys Chem Chem Phys ; 19(23): 15039-15049, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28555212

ABSTRACT

The effect of embedding Au nanoparticles (NPs) in a BiVO4/Fe2O3 heterojunction for photoelectrochemical water splitting is studied here for the first time. The present nanostructured heterojunction offers three major advantages over pristine BiVO4 and Fe2O3: (i) the formation of a heterojunction between BiVO4 and Fe2O3 enhances the charge carrier separation and transfer, (ii) the layer of Fe2O3 provides protection to BiVO4 from photocorrosion and, (iii) the Au NPs possessing surface plasmon resonance (SPR) enhance the photoelectrochemical response by transferring energy to metal oxides by hot electron transfer (HET) and plasmon resonant energy transfer (PRET). The present study reveals that the heterojunction ITO/BiVO4/Fe2O3 (with 32% v/v Au solution in both layers) gives the best performance and mitigates the limitations of both pristine Fe2O3 and BiVO4. A thirteen-fold increment in applied bias photon-to-current conversion efficiency (ABPE) was observed at 1.24 V vs. RHE under the condition of 1 Sun illumination. Monochromatic incident photon-to-current conversion efficiency (IPCE) measurements indicated that an Au embedded heterojunction is more effective in harvesting visible light in comparison to a heterojunction without Au NPs.

9.
Soft Matter ; 12(42): 8654-8660, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27714352

ABSTRACT

The ability to form transient, self-assembling solid networks that 'cocoon' emulsion droplets on-demand allows new possibilities in the rapidly expanding area of microfluidic droplet-based materials science. In this communication, we demonstrate the spontaneous formation of extended colloidal networks that encase large microfluidic droplet ensembles, thus completely arresting droplet motion and effectively isolating each droplet from others in the ensemble. To do this, we employ molecular inclusion complexes of ß-cyclodextrin, which spontaneously form and assemble into colloidal solids at the droplet interface and beyond, via the outward diffusion of a guest molecule (dichloromethane) from the droplets. We illustrate the advantage of such transient network-based droplet stabilization in the area of pharmaceutical crystallization, where we are able to fabricate monodisperse spherical crystalline microgranules of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY), a model hydrophobic drug, with a dramatic enhancement of particle properties compared to conventional methods.

10.
Phys Chem Chem Phys ; 18(48): 32735-32743, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27878167

ABSTRACT

The present study investigates the effect of gradient doping on modifying the photoelectrochemical response of Ti-doped Fe2O3 photoanodes for their use in sunlight based water splitting for hydrogen evolution. The deposition of a thin film over the ITO (tin doped indium oxide) substrate was carried out using a spray pyrolysis method. The concentration of dopant was varied from 0.5-8.0 at% and two sets of samples were also prepared with low to high (0.5-8%) and high to low (8-0.5%) dopant concentrations in the direction towards the substrate. The prepared thin films were characterized using X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, Secondary Ion Mass Spectroscopy (SIMS), X-ray Photoelectron Spectroscopy (XPS) and UV-visible Spectroscopy. The photoelectrochemical studies revealed that the deposition of dopant layers with a low to high concentration towards the substrate exhibited a highly improved photoresponse (200 times) in comparison to the pristine sample and a two fold enhancement in comparison to 2% Ti-doped Fe2O3. The improvement in the photoresponse has been attributed to the values of a high flat band potential, low resistance, high open circuit voltage, carrier separation efficiency, applied bias photon-to-current conversion efficiency (ABPE), and incident photon-to-current conversion efficiency (IPCE). A reduced charge transfer resistance has been demonstrated with Nyquist plots.

11.
Lab Chip ; 24(6): 1602-1615, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38323341

ABSTRACT

Methane hydrates (MHs) have been considered a promising future energy source due to their vast resource volume and high energy density. Understanding the behavior of MH formation and dissociation at the pore-scale and the effect of MH distribution on the gas-liquid two phase flow is of critical importance for designing effective production strategies from natural gas hydrate (NGH) reservoirs. In this study, we devised a novel high-pressure microfluidic chip apparatus that is capable of direct observation of MH formation and dissociation behavior at the pore-scale. MH nucleation and growth behavior at 10.0 MPa and dissociation via thermal stimulation with gas bubble generation and evolution were examined. Our experimental results reveal that two different MH formation mechanisms co-exist in pores: (a) porous-type MH with a rough surface formed from CH4 gas bubbles at the gas-liquid interface and (b) crystal-type MH formed from dissolved CH4 gas. The growth and movement of crystal-type MH can trigger the sudden nucleation of porous-type MH. Spatially, MHs preferentially grow along the gas-liquid interface in pores. MH dissociation under thermal stimulation practically generates gas bubbles with diameters of 20.0-200.0 µm. Based on a custom-designed image analysis technique, three distinct stages of gas bubble evolution were identified during MH dissociation via thermal stimulation: (a) single gas bubble growth with an expanding water layer at an initial slow dissociation rate, (b) rapid generation of clusters of gas bubbles at a fast dissociation rate, and (c) gas bubble coalescence with uniform distribution in the pore space. The novel apparatus designed and the image analysis technique developed in this study allow us to directly capture the dynamic evolution of the gas-liquid interface during MH formation and dissociation at the pore-scale. The results provide direct first-hand visual evidence of the growth of MHs in pores and valuable insights into gas-liquid two-phase flow behavior during fluid production from NGHs.

12.
Langmuir ; 29(30): 9535-43, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23805857

ABSTRACT

We present simple, inexpensive microfluidics-based fabrication of highly monodisperse poly(ionic liquid) microgel beads with a multitude of functionalities that can be chemically switched in facile fashion by anion exchange and further enhanced by molecular inclusion. Specifically, we show how the exquisite control over bead size and shape enables extremely precise, quantitative measurements of anion- and solvent-induced volume transitions in these materials, a crucial feature driving several important applications. Next, by exchanging diverse anions into the synthesized microgel beads, we demonstrate stimuli responsiveness and a multitude of novel functionalities including redox response, controlled release of chemical payloads, magnetization, toxic metal removal from water, and robust, reversible pH sensing. These chemically switchable stimulus-responsive beads are envisioned to open up a vast array of potential applications in portable and preparative chemical analysis, separations and spatially addressed sensing.

13.
J Pharm Sci ; 112(8): 2115-2123, 2023 08.
Article in English | MEDLINE | ID: mdl-37160228

ABSTRACT

Commercialization of most promising active pharmaceutical ingredients (APIs) is impeded either by poor bioavailability or challenging physical properties leading to costly manufacture. Bioavailability of ionizable hydrophobic APIs can be enhanced by its conversion to salt form. While salt form of the API presents higher solution concentration than the non-ionized form, poor physical properties resulting from particle anisotropy or non-ideal morphology (needles) and particle size distribution not meeting dissolution rate targets can still inhibit its commercial translation. In this regard, API physical properties can be improved through addition of non-active components (excipients or carriers) during API manufacture. In this work, a facile method to perform reactive crystallization of an API salt in presence of the microporous environment of a hydrogel microparticle is presented. Specifically, the reaction between acidic antiretroviral API, raltegravir and base potassium hydroxide is performed in the presence of polyethylene glycol diacrylamide hydrogel microparticles. In this bottom-up approach, the spherical template hydrogel microparticles for the reaction lead to monodisperse composites loaded with inherently micronized raltegravir-potassium crystals, thus improving API physical properties without hampering bioavailability. Overall, this technique provides a novel approach to reactive crystallization while maintaining the API polymorph and crystallinity.


Subject(s)
Hydrogels , Crystallization , Raltegravir Potassium , Particle Size , Solubility
14.
Langmuir ; 28(41): 14540-6, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-22991961

ABSTRACT

Recently, liquid crystal (LC) droplets in aqueous solutions have become a new platform for chemical and biological sensing applications. In this work, we present a two-step method to generate monodisperse LC droplets in aqueous solutions for sensing applications. In the first step, we exploit inkjet printing to dispense uniform LC droplets on a solid surface. Uniform LC droplets, ranging from 35 to 136 µm in diameter, can be prepared by printing multiple times on the same spot. In the second step, we flush the LC droplets with a stream of aqueous solution in an open rectangular channel. Factors that determine the polydispersity of the LC droplets include flow rates and surface wettability. Under appropriate experimental conditions (i.e., when the surface is glass and the flow rate is sufficiently high), the LC droplets can be lifted off completely and carried away by the solution, forming free LC droplets (15-62 µm in diameter). These free LC droplets can respond to a chemical reaction and change their optical textures uniformly.


Subject(s)
Ink , Liquid Crystals/chemistry , Particle Size , Printing , Surface Properties , Wettability
15.
Adv Healthc Mater ; 11(8): e2102252, 2022 04.
Article in English | MEDLINE | ID: mdl-34936230

ABSTRACT

Conventional formulation strategies for hydrophobic small-molecule drug products frequently include mechanical milling to decrease active pharmaceutical ingredient (API) crystal size and subsequent granulation processes to produce an easily handled powder. A hydrogel-templated anti-solvent crystallization method is presented for the facile fabrication of microparticles containing dispersed nanocrystals of poorly soluble API. Direct crystallization within a porous hydrogel particle template yields core-shell structures in which the hydrogel core containing API nanocrystals is encased by a crystalline API shell. The process of controllable loading (up to 64% w/w) is demonstrated, and tailored dissolution profiles are achieved by simply altering the template particle size. API release is well described by a shrinking core model. Overall, the approach is a simple, scalable and potentially generalizable method that enables novel means of independently controlling both API crystallization and excipient characteristics, offering a "designer" drug particle system.


Subject(s)
Excipients , Hydrogels , Crystallization/methods , Excipients/chemistry , Particle Size , Solubility , Solvents/chemistry
16.
RSC Adv ; 12(11): 6640, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35427097

ABSTRACT

[This corrects the article DOI: 10.1039/C3RA23176C.].

17.
Nanotechnology ; 22(23): 235305, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21483048

ABSTRACT

Quasi-aligned gold nanodots with a periodicity of ∼ 40 nm have been synthesized on a silica substrate by oblique deposition of gold on fast argon atom-beam-created nanoripples of wavelength 40 nm and subsequent annealing. The size distribution of these aligned nanodots resulting from oblique deposition at 85° of 0.5 nm Au film perpendicular to ripples is narrower than the similar deposition on a flat surface. The deposition and annealing process was simulated with a three-dimensional kinetic lattice Monte Carlo technique in order to understand the formation of aligned nanodots. The atomistic simulation and the experimental results suggest that there is an optimal thickness which can result in nanodots aligned along the ripples in the case of depositions perpendicular to the ripples. The nanodots formed after annealing of the films deposited parallel to ripples or on flat surface lack alignment.

18.
Nano Lett ; 10(9): 3757-63, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20731386

ABSTRACT

The availability of robust, scalable, and automated nanoparticle manufacturing processes is crucial for the viability of emerging nanotechnologies. Metallic nanoparticles of diverse shape and composition are commonly manufactured by solution-phase colloidal chemistry methods, where rapid reaction kinetics and physical processes such as mixing are inextricably coupled, and scale-up often poses insurmountable problems. Here we present the first continuous flow process to synthesize thin gold "nanoshells" and "nanoislands" on colloidal silica surfaces, which are nanoparticle motifs of considerable interest in plasmonics-based applications. We assemble an ordered, flowing composite foam lattice in a simple microfluidic device, where the lattice cells are alternately aqueous drops containing reagents for nanoparticle synthesis or gas bubbles. Microfluidic foam generation enables precisely controlled reagent dispensing and mixing, and the ordered foam structure facilitates compartmentalized nanoparticle growth. This is a general method for aqueous colloidal synthesis, enabling continuous, inherently digital, scalable, and automated production processes for plasmonic nanomaterials.


Subject(s)
Microfluidics , Nanostructures , Automation , Gold , Kinetics , Microscopy, Electron, Transmission
19.
Int J Pharm ; 596: 120230, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33484918

ABSTRACT

Lipids serve as excellent excipients for drug products. Solid lipid microparticles (SLMs) are relatively underexplored in drug delivery; these particles are conventionally prepared using processes yielding polydisperse size distributions, such as spray congealing or emulsification. In this paper, we demonstrate a microfluidics-enabled process for particle engineering of monodisperse solid lipid microparticles with size and content uniformity. To overcome low solubility, we use a volatile solvent to increase drug loading, making the drug-lipid solution a single phase, enabling identical drug loading across particles. We use microfluidic flow extrusion of the solution to generate uniform drug-loaded SLMs, substantially enhancing monodispersity. This method generalises across three drugs-ibuprofen, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY), and naproxen, and two lipids-beeswax and hard fat (Suppocire NAI 25A), forming particles of various solid states: amorphous naproxen in crystalline lipids, crystalline ROY in crystalline lipids, and a eutectic mixture of ibuprofen-hard fat. In vitro dissolution studies on the ibuprofen-hard fat SLMs reveal gradual release, fitting the Higuchi model with 50-65% drug released over 72 h. This work expands the drug particle engineering toolbox to enable the formulation of SLMs with high precision in particle size and drug loading. Moreover, the diverse solid-state outcomes enabled by our method makes it applicable to various drugs having different formulation requirements (crystalline/amorphous).


Subject(s)
Lipids , Microfluidics , Delayed-Action Preparations , Drug Carriers , Drug Compounding , Particle Size , Solubility
20.
Foods ; 10(11)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34828927

ABSTRACT

Inadequate intake of lutein is relevant to a higher risk of age-related eye diseases. However, lutein has been barely incorporated into foods efficiently because it is prone to degradation and is poorly bioaccessible in the gastrointestinal tract. Microfluidics, a novel food processing technology that can control fluid flows at the microscale, can enable the efficient encapsulation of bioactive compounds by fabricating suitable delivery structures. Hence, the present study aimed to evaluate the stability and the bioaccessibility of lutein that is encapsulated in a new noodle-like product made via microfluidic technology. Two types of oils (safflower oil (SO) and olive oil (OL)) were selected as a delivery vehicle for lutein, and two customized microfluidic devices (co-flow and combination-flow) were used. Lutein encapsulation was created by the following: (i) co-flow + SO, (ii) co-flow + OL, (iii) combination-flow + SO, and (iv) combination-flow + OL. The initial encapsulation of lutein in the noodle-like product was achieved at 86.0 ± 2.7%. Although lutein's stability experienced a decreasing trend, the retention of lutein was maintained above 60% for up to seven days of storage. The two types of device did not result in a difference in lutein bioaccessibility (co-flow: 3.1 ± 0.5%; combination-flow: 3.6 ± 0.6%) and SO and OL also showed no difference in lutein bioaccessibility (SO: 3.4 ± 0.8%; OL: 3.3 ± 0.4%). These results suggest that the types of oil and device do not affect the lutein bioaccessibility. Findings from this study may provide scientific insights into emulsion-based delivery systems that employ microfluidics for the encapsulation of bioactive compounds into foods.

SELECTION OF CITATIONS
SEARCH DETAIL