Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Genes Dev ; 33(3-4): 150-165, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30692209

ABSTRACT

Loss of tumor suppressor liver kinase B1 (LKB1) promotes cancer cell proliferation but also leads to decreased metabolic plasticity in dealing with energy crises. Autophagy is a protective process involving self-cannibalization to maintain cellular energy homeostasis during nutrient deprivation. We developed a mouse model for Lkb1-deficient lung cancer with conditional deletion of essential autophagy gene Atg7 to test whether autophagy compensates for LKB1 loss for tumor cells to survive energy crises. We found that autophagy ablation was synthetically lethal during Lkb1-deficient lung tumorigenesis in both tumor initiation and tumor growth. We further found that autophagy deficiency causes defective intracellular recycling, which limits amino acids to support mitochondrial energy production in starved cancer cells and causes autophagy-deficient cells to be more dependent on fatty acid oxidation (FAO) for energy production, leading to reduced lipid reserve and energy crisis. Our findings strongly suggest that autophagy inhibition could be a strategy for treating LKB1-deficient lung tumors.


Subject(s)
Autophagy , Carcinogenesis/pathology , Carrier Proteins/genetics , Lipid Metabolism/physiology , Lung Neoplasms/physiopathology , Proto-Oncogene Proteins p21(ras)/metabolism , Adaptor Proteins, Signal Transducing , Animals , Autophagy/genetics , Autophagy-Related Protein 7/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Survival/genetics , Disease Models, Animal , Energy Metabolism/genetics , Gene Deletion , Humans , Intracellular Signaling Peptides and Proteins
2.
FASEB J ; 31(2): 598-609, 2017 02.
Article in English | MEDLINE | ID: mdl-28148781

ABSTRACT

The molecular mechanisms leading to and responsible for age-related, sporadic Alzheimer's disease (AD) remain largely unknown. It is well documented that aging patients with elevated levels of the amino acid metabolite homocysteine (Hcy) are at high risk of developing AD. We investigated the impact of Hcy on molecular clearance pathways in mammalian cells, including in vitro cultured induced pluripotent stem cell-derived forebrain neurons and in vivo neurons in mouse brains. Exposure to Hcy resulted in up-regulation of the mechanistic target of rapamycin complex 1 (mTORC1) activity, one of the major kinases in cells that is tightly linked to anabolic and catabolic pathways. Hcy is sensed by a constitutive protein complex composed of leucyl-tRNA-synthetase and folliculin, which regulates mTOR tethering to lysosomal membranes. In hyperhomocysteinemic human cells and cystathionine ß-synthase-deficient mouse brains, we find an acute and chronic inhibition of the molecular clearance of protein products resulting in a buildup of abnormal proteins, including ß-amyloid and phospho-Tau. Formation of these protein aggregates leads to AD-like neurodegeneration. This pathology can be prevented by inhibition of mTORC1 or by induction of autophagy. We conclude that an increase of intracellular Hcy levels predisposes neurons to develop abnormal protein aggregates, which are hallmarks of AD and its associated onset and pathophysiology with age.-Khayati, K., Antikainen, H., Bonder, E. M., Weber, G. F., Kruger, W. D., Jakubowski, H., Dobrowolski, R. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice.


Subject(s)
Autophagy/physiology , Gene Expression Regulation/physiology , Homocysteine/metabolism , Multiprotein Complexes/metabolism , Neurons/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes/genetics , TOR Serine-Threonine Kinases/genetics
3.
Cell Death Dis ; 14(1): 61, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36702816

ABSTRACT

LKB1 and KRAS are the third most frequent co-mutations detected in non-small cell lung cancer (NSCLC) and cause aggressive tumor growth. Unfortunately, treatment with RAS-RAF-MEK-ERK pathway inhibitors has minimal therapeutic efficacy in LKB1-mutant KRAS-driven NSCLC. Autophagy, an intracellular nutrient scavenging pathway, compensates for Lkb1 loss to support Kras-driven lung tumor growth. Here we preclinically evaluate the possibility of autophagy inhibition together with MEK inhibition as a treatment for Kras-driven lung tumors. We found that the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and the MEK inhibitor Trametinib displays synergistic anti-proliferative activity in KrasG12D/+;Lkb1-/- (KL) lung cancer cells, but not in KrasG12D/+;p53-/- (KP) lung cancer cells. In vivo studies using tumor allografts, genetically engineered mouse models (GEMMs) and patient-derived xenografts (PDXs) showed anti-tumor activity of the combination of HCQ and Trametinib on KL but not KP tumors. We further found that the combination treatment significantly reduced mitochondrial membrane potential, basal respiration, and ATP production, while also increasing lipid peroxidation, indicative of ferroptosis, in KL tumor-derived cell lines (TDCLs) and KL tumors compared to treatment with single agents. Moreover, the reduced tumor growth by the combination treatment was rescued by ferroptosis inhibitor. Taken together, we demonstrate that autophagy upregulation in KL tumors causes resistance to Trametinib by inhibiting ferroptosis. Therefore, a combination of autophagy and MEK inhibition could be a novel therapeutic strategy to specifically treat NSCLC bearing co-mutations of LKB1 and KRAS.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Mice , Animals , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Ferroptosis/genetics , Protein Serine-Threonine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Mitogen-Activated Protein Kinase Kinases/metabolism , Autophagy , Cell Line, Tumor , Mutation
4.
FEBS J ; 289(22): 7177-7198, 2022 11.
Article in English | MEDLINE | ID: mdl-34270851

ABSTRACT

Autophagy is a catabolic process that captures cellular waste and degrades them in the lysosome. The main functions of autophagy are quality control of cytosolic proteins and organelles, and intracellular recycling of nutrients in order to maintain cellular homeostasis. Autophagy is upregulated in many cancers to promote cell survival, proliferation, and metastasis. Both cell-autonomous autophagy (also known as tumor autophagy) and non-cell-autonomous autophagy (also known as host autophagy) support tumorigenesis through different mechanisms, including inhibition of p53 activation, sustaining redox homeostasis, maintenance of essential amino acids levels in order to support energy production and biosynthesis, and inhibition of antitumor immune responses. Therefore, autophagy may serve as a tumor-specific vulnerability and targeting autophagy could be a novel strategy in cancer treatment.


Subject(s)
Autophagy , Neoplasms , Humans , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Neoplasms/pathology , Lysosomes/metabolism
5.
Cancer Res ; 82(23): 4429-4443, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36156071

ABSTRACT

Autophagy is a conserved catabolic process that maintains cellular homeostasis. Autophagy supports lung tumorigenesis and is a potential therapeutic target in lung cancer. A better understanding of the importance of tumor cell-autonomous versus systemic autophagy in lung cancer could facilitate clinical translation of autophagy inhibition. Here, we exploited inducible expression of Atg5 shRNA to temporally control Atg5 levels and to generate reversible tumor-specific and systemic autophagy loss mouse models of KrasG12D/+;p53-/- (KP) non-small cell lung cancer (NSCLC). Transient suppression of systemic but not tumor Atg5 expression significantly reduced established KP lung tumor growth without damaging normal tissues. In vivo13C isotope tracing and metabolic flux analyses demonstrated that systemic Atg5 knockdown specifically led to reduced glucose and lactate uptake. As a result, carbon flux from glucose and lactate to major metabolic pathways, including the tricarboxylic acid cycle, glycolysis, and serine biosynthesis, was significantly reduced in KP NSCLC following systemic autophagy loss. Furthermore, systemic Atg5 knockdown increased tumor T-cell infiltration, leading to T-cell-mediated tumor killing. Importantly, intermittent transient systemic Atg5 knockdown, which resembles what would occur during autophagy inhibition for cancer therapy, significantly prolonged lifespan of KP lung tumor-bearing mice, resulting in recovery of normal tissues but not tumors. Thus, systemic autophagy supports the growth of established lung tumors by promoting immune evasion and sustaining cancer cell metabolism for energy production and biosynthesis, and the inability of tumors to recover from loss of autophagy provides further proof of concept that inhibition of autophagy is a valid approach to cancer therapy. SIGNIFICANCE: Transient loss of systemic autophagy causes irreversible damage to tumors by suppressing cancer cell metabolism and promoting antitumor immunity, supporting autophagy inhibition as a rational strategy for treating lung cancer. See related commentary by Gan, p. 4322.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Autophagy/physiology , Glucose/metabolism , Lactates
6.
J Clin Invest ; 132(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36256480

ABSTRACT

Glutamine synthetase (GS) catalyzes de novo synthesis of glutamine that facilitates cancer cell growth. In the liver, GS functions next to the urea cycle to remove ammonia waste. As a dysregulated urea cycle is implicated in cancer development, the impact of GS's ammonia clearance function has not been explored in cancer. Here, we show that oncogenic activation of ß-catenin (encoded by CTNNB1) led to a decreased urea cycle and elevated ammonia waste burden. While ß-catenin induced the expression of GS, which is thought to be cancer promoting, surprisingly, genetic ablation of hepatic GS accelerated the onset of liver tumors in several mouse models that involved ß-catenin activation. Mechanistically, GS ablation exacerbated hyperammonemia and facilitated the production of glutamate-derived nonessential amino acids, which subsequently stimulated mechanistic target of rapamycin complex 1 (mTORC1). Pharmacological and genetic inhibition of mTORC1 and glutamic transaminases suppressed tumorigenesis facilitated by GS ablation. While patients with hepatocellular carcinoma, especially those with CTNNB1 mutations, have an overall defective urea cycle and increased expression of GS, there exists a subset of patients with low GS expression that is associated with mTORC1 hyperactivation. Therefore, GS-mediated ammonia clearance serves as a tumor-suppressing mechanism in livers that harbor ß-catenin activation mutations and a compromised urea cycle.


Subject(s)
Glutamate-Ammonia Ligase , Liver Neoplasms , Animals , Mice , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Ammonia/metabolism , Nitrogen/metabolism , Liver Neoplasms/metabolism , Liver/metabolism , Glutamine/metabolism , Homeostasis , Urea/metabolism
7.
Elife ; 92020 11 25.
Article in English | MEDLINE | ID: mdl-33236987

ABSTRACT

Liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11) is the major energy sensor for cells to respond to metabolic stress. Autophagy degrades and recycles proteins, macromolecules, and organelles for cells to survive starvation. To assess the role and cross-talk between autophagy and Lkb1 in normal tissue homeostasis, we generated genetically engineered mouse models where we can conditionally delete Stk11 and autophagy essential gene, Atg7, respectively or simultaneously, throughout the adult mice. We found that Lkb1 was essential for the survival of adult mice, and autophagy activation could temporarily compensate for the acute loss of Lkb1 and extend mouse life span. We further found that acute deletion of Lkb1 in adult mice led to impaired intestinal barrier function, hypoglycemia, and abnormal serum metabolism, which was partly rescued by the Lkb1 loss-induced autophagy upregulation via inhibiting p53 induction. Taken together, we demonstrated that autophagy and Lkb1 work synergistically to maintain adult mouse homeostasis and survival.


Subject(s)
Autophagy-Related Protein 7/metabolism , Autophagy/physiology , Homeostasis/physiology , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , AMP-Activated Protein Kinases , Animals , Autophagy-Related Protein 7/genetics , Epithelial Cells , Gene Deletion , Gene Expression Regulation/physiology , Homeostasis/genetics , Intestinal Mucosa/cytology , Mice , Protein Serine-Threonine Kinases/genetics , Survival , Tumor Suppressor Protein p53/genetics
8.
Cell Rep ; 14(9): 2166-2179, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26923592

ABSTRACT

Attenuated auto-lysosomal system has been associated with Alzheimer disease (AD), yet all underlying molecular mechanisms leading to this impairment are unknown. We show that the amino acid sensing of mechanistic target of rapamycin complex 1 (mTORC1) is dysregulated in cells deficient in presenilin, a protein associated with AD. In these cells, mTORC1 is constitutively tethered to lysosomal membranes, unresponsive to starvation, and inhibitory to TFEB-mediated clearance due to a reduction in Sestrin2 expression. Normalization of Sestrin2 levels through overexpression or elevation of nuclear calcium rescued mTORC1 tethering and initiated clearance. While CLEAR network attenuation in vivo results in buildup of amyloid, phospho-Tau, and neurodegeneration, presenilin-knockout fibroblasts and iPSC-derived AD human neurons fail to effectively initiate autophagy. These results propose an altered mechanism for nutrient sensing in presenilin deficiency and underline an importance of clearance pathways in the onset of AD.


Subject(s)
Presenilins/genetics , Alzheimer Disease/metabolism , Amino Acids/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Brain/metabolism , Brain/pathology , Calcium/metabolism , Cell Nucleus/metabolism , Cells, Cultured , Gene Regulatory Networks , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , Nutritional Physiological Phenomena , Peroxidases , Presenilins/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL