Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Virol ; 92(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29514905

ABSTRACT

Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease.IMPORTANCE Acute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease.


Subject(s)
Apoptosis/immunology , Epithelial Cells/immunology , Intestinal Mucosa/immunology , Mammalian orthoreovirus 3/immunology , Orthoreovirus, Mammalian/immunology , Reoviridae Infections/immunology , Animals , Antigens, Viral/immunology , Cell Line , Cricetinae , Epithelial Cells/pathology , Epithelial Cells/virology , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Mice , Reoviridae Infections/pathology
2.
J Virol ; 88(5): 2385-97, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24371059

ABSTRACT

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging arbovirus responsible for outbreaks of infection throughout Asia and Africa, causing an acute illness characterized by fever, rash, and polyarthralgia. Although CHIKV infects a broad range of host cells, little is known about how CHIKV binds and gains access to the target cell interior. In this study, we tested whether glycosaminoglycan (GAG) binding is required for efficient CHIKV replication using CHIKV vaccine strain 181/25 and clinical isolate SL15649. Preincubation of strain 181/25, but not SL15649, with soluble GAGs resulted in dose-dependent inhibition of infection. While parental Chinese hamster ovary (CHO) cells are permissive for both strains, neither strain efficiently bound to or infected mutant CHO cells devoid of GAG expression. Although GAGs appear to be required for efficient binding of both strains, they exhibit differential requirements for GAGs, as SL15649 readily infected cells that express excess chondroitin sulfate but that are devoid of heparan sulfate, whereas 181/25 did not. We generated a panel of 181/25 and SL15649 variants containing reciprocal amino acid substitutions at positions 82 and 318 in the E2 glycoprotein. Reciprocal exchange at residue 82 resulted in a phenotype switch; Gly(82) results in efficient infection of mutant CHO cells but a decrease in heparin binding, whereas Arg(82) results in reduced infectivity of mutant cells and an increase in heparin binding. These results suggest that E2 residue 82 is a primary determinant of GAG utilization, which likely mediates attenuation of vaccine strain 181/25. IMPORTANCE: Chikungunya virus (CHIKV) infection causes a debilitating rheumatic disease that can persist for months to years, and yet there are no licensed vaccines or antiviral therapies. Like other alphaviruses, CHIKV displays broad tissue tropism, which is thought to be influenced by virus-receptor interactions. In this study, we determined that cell-surface glycosaminoglycans are utilized by both a vaccine strain and a clinical isolate of CHIKV to mediate virus binding. We also identified an amino acid polymorphism in the viral E2 attachment protein that influences utilization of glycosaminoglycans. These data enhance an understanding of the viral and host determinants of CHIKV cell entry, which may foster development of new antivirals that act by blocking this key step in viral infection.


Subject(s)
Amino Acid Substitution , Chikungunya virus/physiology , Glycosaminoglycans/metabolism , Polymorphism, Single Nucleotide , Viral Envelope Proteins/genetics , Alphavirus Infections/metabolism , Animals , CHO Cells , Chikungunya Fever , Chikungunya virus/genetics , Chikungunya virus/metabolism , Chlorocebus aethiops , Cricetinae , Cricetulus , Endosomes/metabolism , Endosomes/virology , Genotype , Glycosaminoglycans/pharmacology , Heparitin Sulfate/metabolism , Heparitin Sulfate/pharmacology , Humans , Hydrogen Bonding , Kinetics , Models, Molecular , Mutation , Protein Multimerization , Static Electricity , Vero Cells , Viral Envelope Proteins/chemistry , Virus Attachment/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects
3.
Sci Adv ; 9(38): eadj1736, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37738347

ABSTRACT

Pathology studies of SARS-CoV-2 Omicron variants of concern (VOC) are challenged by the lack of pathogenic animal models. While Omicron BA.1 and BA.2 replicate in K18-hACE2 transgenic mice, they cause minimal to negligible morbidity and mortality, and less is known about more recent Omicron VOC. Here, we show that in contrast to Omicron BA.1, BA.5-infected mice exhibited high levels of morbidity and mortality, correlating with higher early viral loads. Neither Omicron BA.1 nor BA.5 replicated in brains, unlike most prior VOC. Only Omicron BA.5-infected mice exhibited substantial weight loss, high pathology scores in lungs, and high levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid, and 5- to 8-month-old mice exhibited 100% fatality. These results identify a rodent model for pathogenesis or antiviral countermeasure studies for circulating SARS-CoV-2 Omicron BA.5. Further, differences in morbidity and mortality between Omicron BA.1 and BA.5 provide a model for understanding viral determinants of pathogenicity.


Subject(s)
COVID-19 , Animals , Mice , Virulence , SARS-CoV-2 , Antiviral Agents , Mice, Transgenic
4.
Science ; 356(6333): 44-50, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28386004

ABSTRACT

Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.


Subject(s)
Antigens/immunology , Celiac Disease/immunology , Celiac Disease/virology , Glutens/immunology , Inflammation/virology , Reoviridae Infections/complications , Reoviridae Infections/immunology , Th1 Cells/immunology , Animals , Diet/adverse effects , Disease Models, Animal , Genetic Engineering , Humans , Immune Tolerance , Inflammation/immunology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Intestines/immunology , Intestines/pathology , Intestines/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptor, Interferon alpha-beta/genetics , Reoviridae/genetics
5.
Cell Host Microbe ; 18(1): 86-95, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26159721

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-transmitted RNA virus that causes acute febrile infection associated with polyarthralgia in humans. Mechanisms of protective immunity against CHIKV are poorly understood, and no effective therapeutics or vaccines are available. We isolated and characterized human monoclonal antibodies (mAbs) that neutralize CHIKV infectivity. Among the 30 mAbs isolated, 13 had broad and ultrapotent neutralizing activity (IC50 < 10 ng/ml), and all of these mapped to domain A of the E2 envelope protein. Potent inhibitory mAbs blocked post-attachment steps required for CHIKV membrane fusion, and several were protective in a lethal challenge model in immunocompromised mice, even when administered at late time points after infection. These highly protective mAbs could be considered for prevention or treatment of CHIKV infection, and their epitope location in domain A of E2 could be targeted for rational structure-based vaccine development.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Chikungunya Fever/therapy , Chikungunya virus/immunology , Immunization, Passive/methods , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/isolation & purification , Chemoprevention/methods , Chikungunya virus/physiology , Disease Models, Animal , Humans , Inhibitory Concentration 50 , Mice , Protein Binding , Survival Analysis , Treatment Outcome , Viral Envelope Proteins/immunology , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL