Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Nature ; 599(7885): 416-420, 2021 11.
Article in English | MEDLINE | ID: mdl-34789904

ABSTRACT

The systematic tuning of crystal lattice parameters to achieve improved kinematic compatibility between different phases is a broadly effective strategy for improving the reversibility, and lowering the hysteresis, of solid-solid phase transformations1-11. (Kinematic compatibility refers to the fitting together of the phases.) Here we present an apparently paradoxical example in which tuning to near perfect kinematic compatibility results in an unusually high degree of irreversibility. Specifically, when cooling the kinematically compatible ceramic (Zr/Hf)O2(YNb)O4 through its tetragonal-to-monoclinic phase transformation, the polycrystal slowly and steadily falls apart at its grain boundaries (a process we term weeping) or even explosively disintegrates. If instead we tune the lattice parameters to satisfy a stronger 'equidistance' condition (which additionally takes into account sample shape), the resulting material exhibits reversible behaviour with low hysteresis. These results show that a diversity of behaviours-from reversible at one extreme to explosive at the other-is possible in a chemically homogeneous ceramic system by manipulating conditions of compatibility in unexpected ways. These concepts could prove critical in the current search for a shape-memory oxide ceramic9-12.

2.
Anal Chem ; 96(28): 11290-11298, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958037

ABSTRACT

Nanoscale zinc-oxide doped with aluminum ZnO:Al is studied by different techniques targeting surface changes induced by the conditions at which ZnO:Al is used as support material in the catalysis of methanol. While it is well established that a variety of 1H and 27Al resonances can be found by solid-state NMR for this material, it was not clear yet which signals are related to species located close to the surface of the material and which to species located in the bulk. To this end, a method is suggested that makes use of a paramagnetically impregnated material to suppress NMR signals close to the particle surface in the blind sphere around the paramagnetic metal atoms. It is shown that it is important to use conditions that guarantee a stable reference system relative to which it can be established whether the coating procedure is conserving the original structure or not. This method, called paramagnetically assisted surface peak assignment, helped to assign the 1H and 27Al NMR peaks to the bulk and the surface layer defined by the blind sphere of the paramagnetic atoms. The assignment results are further corroborated by the results from heteronuclear 27Al{1H} dipolar dephasing experiments, which indicate that the hydrogen atoms are preferentially located in the surface layer and not in the particle core.

3.
Small ; 20(24): e2310660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38164883

ABSTRACT

Designing an efficient, durable, and inexpensive bifunctional electrocatalyst toward oxygen evolution reactions (OER) and oxygen reduction reactions (ORR) remains a significant challenge for the development of rechargeable zinc-air batteries (ZABs). The generation of oxygen vacancies plays a vital role in modifying the surface properties of transition-metal-oxides (TMOs) and thus optimizing their electrocatalytic performances. Herein, a H2/Ar plasma is employed to generate abundant oxygen vacancies at the surfaces of NiCo2O4 nanowires. Compared with the Ar plasma, the H2/Ar plasma generated more oxygen vacancies at the catalyst surface owing to the synergic effect of the Ar-related ions and H-radicals in the plasma. As a result, the NiCo2O4 catalyst treated for 7.5 min in H2/Ar plasma exhibited the best bifunctional electrocatalytic activities and its gap potential between Ej = 10 for OER and E1/2 for ORR is even smaller than that of the noble-metal-based catalyst. In situ electrochemical experiments are also conducted to reveal the proposed mechanisms for the enhanced electrocatalytic performance. The rechargeable ZABs, when equipped with cathodes utilizing the aforementioned catalyst, achieved an outstanding charge-discharge gap, as well as superior cycling stability, outperforming batteries employing noble-metal catalyst counterparts.

4.
Anal Bioanal Chem ; 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39412695

ABSTRACT

Interleukin-6 (IL-6) belongs to the cytokine family and plays a vital role in regulating immune response, bone maintenance, body temperature adjustment, and cell growth. The overexpression of IL-6 can indicate various health complications, such as anastomotic leakage, cancer, and chronic diseases. Therefore, the availability of highly sensitive and specific biosensing platforms for IL-6 detection is critical. In this study, for the first time, epitope-mediated IL-6-specific magnetic molecularly imprinted core-shell structures with fluorescent properties were synthesized using a three-step protocol, namely, magnetic nanoparticle functionalization, polymerization, and template removal following thorough optimization studies. The magnetic molecularly imprinted polymers (MMIPs) were characterized using dynamic and electrophoretic light scattering (DLS and ELS), revealing a hydrodynamic size of 169.9 nm and zeta potential of +17.1 mV, while Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy techniques showed characteristic peaks of the polymer and fluorescent tag, respectively. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) investigations confirmed the successful encapsulation of the magnetic core within the ca. 5-nm-thick polymeric shell. The MMIP-based electrochemical sensing platform achieved a limit of detection of 0.38 pM within a linear detection range of 0.38-380 pM, indicating high affinity (dissociation constant KD = 1.6 pM) for IL-6 protein in 50% diluted serum samples. Moreover, comparative investigations with the non-imprinted control polymer demonstrated an imprinting factor of 4, confirming high selectivity. With multifunctional features, including fluorescence, magnetic properties, and target responsiveness, the synthesized MMIPs hold significant potential for application in various sensor techniques as well as imaging.

5.
Small ; 19(18): e2207492, 2023 May.
Article in English | MEDLINE | ID: mdl-36782364

ABSTRACT

The material design of functional "aero"-networks offers a facile approach to optical, catalytical, or and electrochemical applications based on multiscale morphologies, high large reactive area, and prominent material diversity. Here in this paper, the synthesis and structural characterization of a hybrid ß-Ga2 O3 /ZnGa2 O4 nanocomposite aero-network are presented. The nanocomposite networks are studied on multiscale with respect to their micro- and nanostructure by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and are characterized for their photoluminescent response to UV light excitation and their electrochemical performance with Li-ion conversion reaction. The structural investigations reveal the simultaneous transformation of the precursor aero-GaN(ZnO) network into hollow architectures composed of ß-Ga2 O3 and ZnGa2 O4 nanocrystals with a phase ratio of ≈1:2. The photoluminescence of hybrid aero-ß-Ga2 O3 /ZnGa2 O4 nanocomposite networks demonstrates narrow band (λem  = 504 nm) green light emission of ZnGa2 O4 under UV light excitation (λex  = 300 nm). The evaluation of the metal-oxide network performance for electrochemical application for Li-ion batteries shows high initial capacities of ≈714 mAh g-1 at 100 mA g-1 paired with exceptional rate performance even at high current densities of 4 A g-1 with 347 mAh g-1 . This study provides is an exciting showcase example of novel networked materials and demonstrates the opportunities of tailored micro-/nanostructures for diverse applications a diversity of possible applications.

6.
Small ; 16(2): e1905141, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31814275

ABSTRACT

The development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured hybrid GaN/ZnO:Au microtubes containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of ZnO on the inner wall of the produced GaN microtubes is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga1- x Znx )(N1- x Ox ) nanowires into the interior space of the microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaOx species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of GaN/ZnO microtubes could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced microtubes are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies.

7.
Chemphyschem ; 21(5): 397-405, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-31944536

ABSTRACT

GeSe micro-sheets and micro-belts have been synthesized by a facile one-pot wet chemical method in 1-octadecene solvent and oleic acid solvent, respectively. The adsorption of more oleic acid molecules on the (002) plane promoted growth along [010] direction of the GeSe micro-belts and limited carrier transport in this direction, resulting in higher carrier concentration and mobility of the GeSe micro-belts. The performance of the photodetectors based on the single GeSe micro-sheet and the single GeSe micro-belt was investigated under illumination at 532 nm, 980 nm and 1319 nm. Both, photodetectors based on a single GeSe micro-sheet and a single GeSe micro-belt, exhibit a high photoresponse, short response/recovery times, and long-term durability. Moreover, the photodetector based on a single GeSe micro-belt displays a broadband response with a high responsivity (5562 A/W at 532 nm, 1546 A/W at 980 nm) and detectivity (3.01×1012 Jones at 532 nm, 8.38×1011 Jones at 980 nm). These excellent characteristics render single GeSe micro-belts very interesting for use as highly efficient photodetectors, especially in the NIR region.

9.
Chemistry ; 25(27): 6763-6772, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30829419

ABSTRACT

A new preparation route is developed for the synthesis of needle-like crystals of [Au(S2 CNH2 )2 ]SCN, which avoids disproportionation of the AuI salt used as a starting material. In the crystal structure, the two crystallographically independent AuIII centers are in a square-planar environment of two S2 CNH2 ligands. The Hirshfeld surface analysis reveals the presence of noncovalent intermolecular S⋅⋅⋅S interactions, which are essential for the spatial arrangement of the molecules. Density functional theory (DFT) calculations including dispersion and damping corrections result in a unit cell volume very close to the value determined experimentally. Thermal decomposition in an inert atmosphere generates black needles with lengths of up to 500 µm. X-ray powder diffraction and pair distribution function analyses demonstrate that the needles are composed of nanosized crystals with a volume-weighted average domain size of 20(1) nm. According to results of X-ray photoemission experiments, the black needles are covered by a nitrogen-rich carbon nitride with composition near (CN)2 N. 13 C solid-state NMR investigations indicate that two different carbon species are present, with signals corresponding well to heptazine units as in melon and triazine units as in poly(triazin imide) type compounds. Scanning transmission electron microscopy tomography evidences that the needles are composed of slightly elongated nanoparticles.

10.
Nanotechnology ; 30(28): 285401, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-30645979

ABSTRACT

Films containing 8, 16, 24, 32 and 64 MoSe2 layers were synthesized using the modulated elemental reactants method. X-ray reflectivity patterns showed that the annealed films were the targeted number of MoSe2 layers thick with atomically smooth interfaces. In-plane x-ray diffraction (XRD) scans contained only hk0 reflections for crystalline MoSe2 monolayers. Specular XRD patterns contained only 00l reflections, also indicating that the hk0 plane of the MoSe2 layers are parallel to the substrate. Both XRD and electron microscopy techniques indicated that the hk0 planes are rotationally disordered with respect to one another, with all orientations equally probable for large areas. The rotational disorder between MoSe2 layers is present even when analyzed spots are within 10 nm of one another. Cross-plane thermal conductivities of 0.07-0.09 W m-1 K-1 were measured by time domain thermoreflectance, with the thinnest films exhibiting the lowest conductivity. The structural analysis suggests that the ultralow thermal conductivity is a consequence of rotational disorder, which increases the separation between MoSe2 layers. The bonding environment of the Se atoms also becomes significantly distorted from C 3v symmetry due to the rotational disorder between layers. This structural disorder efficiently reduces the group velocity of the transverse phonon modes but not that of longitudinal modes. Since rotational disorder between adjacent layers in heterostructures is expected if the constituents have incommensurate lattices, this study indicates that these heterostructures will have very low cross-plane thermal conductivity.

11.
Nanotechnology ; 30(6): 065501, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30523820

ABSTRACT

Novel gas sensors have been realized by decorating clusters of tubular Aerographite with CdTe using magnetron sputtering techniques. Subsequently, individual microtubes were separated and electrically contacted on a SiO2/Si substrate with pre-patterned electrodes. Cathodoluminescence, electron microscopy and electrical characterization prove the successful formation of a polycrystalline CdTe thin film on Aerographite enabling an excellent gas response to ammonia. Furthermore, the dynamical response to ammonia exposure has been investigated, highlighting the quick response and recovery times of the sensor, which is highly beneficial for extremely short on/off cycles. Therefore, this gas sensor reveals a large potential for cheap, highly selective, reliable and low-power gas sensors, which are especially important for hazardous gases such as ammonia.

12.
Microsc Microanal ; 25(3): 592-600, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30829197

ABSTRACT

In situ transmission electron microscope (TEM) characterization techniques provide valuable information on structure-property correlations to understand the behavior of materials at the nanoscale. However, understanding nanoscale structures and their interaction with the electron beam is pivotal for the reliable interpretation of in situ/ex situ TEM studies. Here, we report that oxides commonly used in nanoelectronic applications, such as transistor gate oxides or memristive devices, are prone to electron beam induced damage that causes small structural changes even under very low dose conditions, eventually changing their electrical properties as examined via in situ measurements. In this work, silicon, titanium, and niobium oxide thin films are used for in situ TEM electrical characterization studies. The electron beam induced reduction of the oxides turns these insulators into conductors. The conductivity change is reversible by exposure to air, supporting the idea of electron beam reduction of oxides as primary damage mechanism. Through these measurements we propose a limit for the critical dose to be considered for in situ scanning electron microscopy and TEM characterization studies.

13.
Phys Chem Chem Phys ; 20(28): 19129-19141, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29974092

ABSTRACT

We report on results of a comprehensive investigation on reaction mechanisms occurring during Li uptake and release of the composite NiFe2O4/CNT. Operando X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) data collected simultaneously using one in situ cell allowed thorough elucidation of structural and electronic alterations happening during Li uptake. From the beginning of Li uptake, the Bragg intensity of the spinel reflections decreases which can be explained by reduction of Fe3+ ions and simultaneous movement of the Fe2+ cations from tetrahedral 8a to empty octahedral 16c sites. The reduction of Fe3+ is clearly evidenced by XAS. The occupation of tetrahedral sites by Li+ can be excluded based on results of density functional theory calculations. Increasing the Li content leads to formation of a new crystalline phase resembling a monoxide with a NaCl-like structure. The appearance of the new phase is accompanied by a steady decrease of the sizes of coherently scattering domains of the spinel and a growth of the domains of the monoxide phase. After uptake of about 2.5 Li per NiFe2O4, all Fe3+ cations are reduced to Fe2+ and the tetrahedral 8a sites are empty (XAS spectra). Careful Rietveld refinements of X-ray powder patterns demonstrate that the tetrahedral 8a site is successively depleted with increasing Li content. Interestingly, the occupancy of the octahedral 16d site is also slightly reduced. Increasing the Li content beyond 2.5 Li/NiFe2O4 leads to successive reduction of the cations to very small metal particles embedded in a Li2O matrix (as evidenced by 7Li MAS NMR investigations). During Li release metallic Ni and Fe are reoxidized to Ni2+ resp. Fe3+. The cycling stability of NiFe2O4/CNT is significantly improved compared to pure NiFe2O4 or a mechanical mixture of NiFe2O4 and CNTs.

14.
Small ; 13(16)2017 04.
Article in English | MEDLINE | ID: mdl-28186367

ABSTRACT

A composed morphology of iron oxide microstructures covered with very thin nanowires (NWs) with diameter of 15-50 nm has been presented. By oxidizing metallic Fe microparticles at 255 °C for 12 and 24 h, dense iron oxide NW networks bridging prepatterned Au/Cr pads are obtained. X-ray photoelectron spectroscopy studies reveal formation of α-Fe2 O3 and Fe3 O4 on the surface and it is confirmed by detailed high-resolution transmission electron microscopy and selected area electron diffraction (SAED) investigations that NWs are single phase α-Fe2 O3 and some domains of single phase Fe3 O4 . Localized synthesis of such nano- and microparticles directly on sensor platform/structure at 255 °C for 24 h and reoxidation at 650 °C for 0.2-2 h, yield in highly performance and reliable detection of acetone vapor with fast response and recovery times. First nanosensors on a single α-Fe2 O3 nanowire are fabricated and studied showing excellent performances and an increase in acetone response by decrease of their diameter was developed. The facile technological approach enables this nanomaterial as candidate for a range of applications in the field of nanoelectronics such as nanosensors and biomedicine devices, especially for breath analysis in the treatment of diabetes patients.

15.
Nanotechnology ; 28(17): 175703, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28294956

ABSTRACT

Alloy nanoparticles with variable compositions add a new dimension to nanoscience and have many applications. Here we suggest a novel approach for the fabrication of variable composition alloy nanoparticles that is based on a Haberland type gas aggregation cluster source with a custom-made multicomponent target for magnetron sputtering. The approach, which was demonstrated here for gold-rich AgAu nanoparticles, combines a narrow nanoparticle size distribution with in operando variation of composition via the gas pressure as well as highly efficient usage of target material. The latter is particularly attractive for precious metals. Varying argon pressure during deposition, we achieved in operando changes of AgAu alloy nanoparticle composition of more than 13 at%. The alloy nanoparticles were characterized by x-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy. The characteristic plasmon resonances of multilayer nanoparticle composites were analyzed by UV-vis spectroscopy. Tuning of the number of particles per unit area (particle densities) within individual layers showed an additional degree of freedom to tailor the optical properties of multilayer nanocomposites. By extension of this technique to more complex systems, the presented results are expected to encourage and simplify further research based on plasmonic multi-element nanoparticles. The present method is by no means restricted to plasmonics or nanoparticle based applications, but is also highly relevant for conventional magnetron sputtering of alloys and can be extended to in operando control of alloy concentration by magnetic field.

16.
Chemistry ; 22(47): 16929-16938, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27723136

ABSTRACT

A composite consisting of CoFe2 O4 spinel nanoparticles and reduced graphite oxide (rGO) is studied as an anode material during Li uptake and release by applying synchrotron operando X-ray diffraction (XRD) and operando X-ray absorption spectroscopy (XAS), yielding a comprehensive picture of the reaction mechanisms. In the early stages of Li uptake, a monoxide is formed as an intermediate phase containing Fe2+ and Co2+ ions; this observation is in contrast to reaction pathways proposed in the literature. In the fully discharged state, metallic Co and Fe nanoparticles are embedded in an amorphous Li2 O matrix. During charge, metallic Co and Fe are oxidized simultaneously to Co2+ and Fe3+ , respectively, thus enabling a high and stable capacity to be achieved. Here, evidence is presented that the rGO acts as a support for the nanoparticles and prevents the particles from contact loss. The operando investigations are complemented by TEM, Raman spectroscopy, galvanostatic cycling, and cyclic voltammetry.

17.
Chemistry ; 21(24): 8918-25, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25925691

ABSTRACT

Nanocomposites based on molybdenum disulfide (MoS2 ) and different carbon modifications are intensively investigated in several areas of applications due to their intriguing optical and electrical properties. Addition of a third element may enhance the functionality and application areas of such nanocomposites. Herein, we present a facile synthetic approach based on directed thermal decomposition of (Ph4 P)2 MoS4 generating MoS2 nanocomposites containing carbon and phosphorous. Decomposition at 250 °C yields a composite material with significantly enlarged MoS2 interlayer distances caused by in situ formation of Ph3 PS bonded to the MoS2 slabs through MoS bonds and (Ph4 P)2 S molecules in the van der Waals gap, as was evidenced by (31) P solid-state NMR spectroscopy. Visible-light-driven hydrogen generation demonstrates a high catalytic performance of the materials.

18.
Inorg Chem ; 54(3): 733-9, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-24969220

ABSTRACT

Two intermetallic phases in the Sr-Li system have been synthesized and structurally characterized. According to single-crystal X-ray diffraction data, Sr(19)Li(44) and Sr(3)Li(2) crystallize with tetragonal unit cells (Sr(19)Li(44), I-42d, a = 15.9122(7) Å, c = 31.831(2) Å, Z = 4, V = 8059(2) Å(3); Sr(3)Li(2), P42/mnm, a = 9.803(1) Å, c = 8.784(2) Å, Z = 4, V = 844.2(2) Å(3)). The first compound is isostructural with the recently discovered Ba(19)Li(44). Sr in Sr(19)Li(44) can be fully replaced by Ba with no changes to the crystal structure, whereas the substitution of Sr by Ca is only possible within a limited concentration range. Sr(3)Li(2) can be assigned to the Al(2)Zr(3) structure type. The crystal structure determination of Sr(19)Li(44) was complicated by multiple twinning. As an experimental highlight, an electron microscopy investigation of the highly moisture- and electron-beam-sensitive crystals was performed, enabling high-resolution imaging of the defect structure.

19.
ACS Appl Mater Interfaces ; 16(32): 42534-42545, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39102275

ABSTRACT

Epitaxial strain plays an important role in the stabilization of ferroelectricity in doped hafnia thin films, which are emerging candidates for Si-compatible nanoscale devices. Here, we report on epitaxial ferroelectric thin films of doped HfO2 deposited on La0.7Sr0.3MnO3-buffered SrTiO3 substrates, La0.7Sr0.3MnO3 SrTiO3-buffered Si (100) wafers, and trigonal Al2O3 substrates. The investigated films appear to consist of four domains in a rhombohedral phase for films deposited on La0.7Sr0.3MnO3-buffered SrTiO3 substrates and two domains for those deposited on sapphire. These findings are supported by extensive transmission electron microscopy characterization of the investigated films. The doped hafnia films show ferroelectric behavior with a remanent polarization up to 25 µC/cm2 and they do not require wake-up cycling to reach the polarization, unlike the reported polycrystalline orthorhombic ferroelectric hafnia films.

20.
ACS Appl Mater Interfaces ; 16(26): 34294-34302, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38886009

ABSTRACT

Group III-nitride semiconductors have been subject of intensive research, resulting in the maturing of the material system and adoption of III-nitrides in modern optoelectronics and power electronic devices. Defined film polarity is an important aspect of III-nitride epitaxy as the polarity affects the design of electronic devices. Magnetron sputtering is a novel approach for cost-effective epitaxy of III-nitrides nearing the technological maturity needed for device production; therefore, control of film polarity is an important technological milestone. In this study, we show the impact of Al seeding on the AlN/Si interface and resulting changes in crystal quality, film morphology, and polarity of GaN/AlN stacks grown by magnetron sputter epitaxy. X-ray diffraction measurements demonstrate the improvement of the crystal quality of the AlN and subsequently the GaN film by the Al seeding. Nanoscale structural and chemical investigations using scanning transmission electron microscopy reveal the inversion of the AlN film polarity. It is proposed that N-polar growth induced by Al seeding is related to the formation of a polycrystalline oxygen-rich AlN interlayer partially capped by an atomically thin Si-rich layer at the AlN/Si interface. Complementary aqueous KOH etch studies of GaN/AlN stacks demonstrate that purely metal-polar and N-polar layers can be grown on a macroscopic scale by controlling the amount of Al seeding.

SELECTION OF CITATIONS
SEARCH DETAIL