Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Commun ; 15(1): 220, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212328

ABSTRACT

Stimulator of interferon genes (STING) is critical for the type I interferon response to pathogen- or self-derived DNA in the cytosol. STING may function as a scaffold to activate TANK-binding kinase 1 (TBK1), but direct cellular evidence remains lacking. Here we show, using single-molecule imaging of STING with enhanced time resolutions down to 5 ms, that STING becomes clustered at the trans-Golgi network (about 20 STING molecules per cluster). The clustering requires STING palmitoylation and the Golgi lipid order defined by cholesterol. Single-molecule imaging of TBK1 reveals that STING clustering enhances the association with TBK1. We thus provide quantitative proof-of-principle for the signaling STING scaffold, reveal the mechanistic role of STING palmitoylation in the STING activation, and resolve the long-standing question of the requirement of STING translocation for triggering the innate immune signaling.


Subject(s)
Lipoylation , trans-Golgi Network , trans-Golgi Network/metabolism , Microscopy , Single Molecule Imaging , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cholesterol , Cluster Analysis , Immunity, Innate
2.
Nat Commun ; 12(1): 61, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397928

ABSTRACT

Coat protein complex I (COP-I) mediates the retrograde transport from the Golgi apparatus to the endoplasmic reticulum (ER). Mutation of the COPA gene, encoding one of the COP-I subunits (α-COP), causes an immune dysregulatory disease known as COPA syndrome. The molecular mechanism by which the impaired retrograde transport results in autoinflammation remains poorly understood. Here we report that STING, an innate immunity protein, is a cargo of the retrograde membrane transport. In the presence of the disease-causative α-COP variants, STING cannot be retrieved back to the ER from the Golgi. The forced Golgi residency of STING results in the cGAS-independent and palmitoylation-dependent activation of the STING downstream signaling pathway. Surf4, a protein that circulates between the ER/ ER-Golgi intermediate compartment/ Golgi, binds STING and α-COP, and mediates the retrograde transport of STING to the ER. The STING/Surf4/α-COP complex is disrupted in the presence of the disease-causative α-COP variant. We also find that the STING ligand cGAMP impairs the formation of the STING/Surf4/α-COP complex. Our results suggest a homeostatic regulation of STING at the resting state by retrograde membrane traffic and provide insights into the pathogenesis of COPA syndrome.


Subject(s)
Endoplasmic Reticulum/metabolism , Homeostasis , Membrane Proteins/metabolism , Animals , Brefeldin A/pharmacology , COP-Coated Vesicles/drug effects , COP-Coated Vesicles/metabolism , COP-Coated Vesicles/ultrastructure , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/ultrastructure , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , HEK293 Cells , Humans , Lipoylation , Luciferases/metabolism , Mice , Nucleotidyltransferases/metabolism , Protein Binding/drug effects , Protein Transport/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL