Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 372
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 608(7921): 56-61, 2022 08.
Article in English | MEDLINE | ID: mdl-35922503

ABSTRACT

Indium gallium nitride (InGaN)-based micro-LEDs (µLEDs) are suitable for meeting ever-increasing demands for high-performance displays owing to their high efficiency, brightness and stability1-5. However, µLEDs have a large problem in that the external quantum efficiency (EQE) decreases with the size reduction6-9. Here we demonstrate a blue InGaN/GaN multiple quantum well (MQW) nanorod-LED (nLED) with high EQE. To overcome the size-dependent EQE reduction problem8,9, we studied the interaction between the GaN surface and the sidewall passivation layer through various analyses. Minimizing the point defects created during the passivation process is crucial to manufacturing high-performance nLEDs. Notably, the sol-gel method is advantageous for the passivation because SiO2 nanoparticles are adsorbed on the GaN surface, thereby minimizing its atomic interactions. The fabricated nLEDs showed an EQE of 20.2 ± 0.6%, the highest EQE value ever reported for the LED in the nanoscale. This work opens the way for manufacturing self-emissive nLED displays that can become an enabling technology for next-generation displays.

2.
Bioessays ; 46(3): e2300211, 2024 03.
Article in English | MEDLINE | ID: mdl-38214366

ABSTRACT

Efficient management of low energy states is vital for cells to maintain basic functions and metabolism and avoid cell death. While autophagy has long been considered a critical mechanism for ensuring survival during energy depletion, recent research has presented conflicting evidence, challenging the long-standing concept. This recent development suggests that cells prioritize preserving essential cellular components while restraining autophagy induction when cellular energy is limited. This essay explores the conceptual discourse on autophagy regulation during energy stress, navigating through the studies that established the current paradigm and the recent research that has challenged its validity while proposing an alternative model. This exploration highlights the far-reaching implications of the alternative model, which represents a conceptual departure from the established paradigm, offering new perspectives on how cells respond to energy stress.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , AMP-Activated Protein Kinases/metabolism , Autophagy/physiology
3.
Proc Natl Acad Sci U S A ; 119(18): e2201922119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35486696

ABSTRACT

SignificanceThe electroconversion of CO2 to value-added products is a promising path to sustainable fuels and chemicals. However, the microenvironment that is created during CO2 electroreduction near the surface of heterogeneous Cu electrocatalysts remains unknown. Its understanding can lead to the development of ways to improve activity and selectivity toward multicarbon products. This work introduces a method called on-stream substitution of reactant isotope that provides quantitative information of the CO intermediate species present on Cu surfaces during electrolysis. An intermediary CO reservoir that contains more CO molecules than typically expected in a surface adsorbed configuration was identified. Its size was shown to be a factor closely associated with the formation of multicarbon products.

4.
Small ; : e2402961, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895971

ABSTRACT

Reservoir computing (RC) system is based upon the reservoir layer, which non-linearly transforms input signals into high-dimensional states, facilitating simple training in the readout layer-a linear neural network. These layers require different types of devices-the former demonstrated as diffusive memristors and the latter prepared as drift memristors. The integration of these components can increase the structural complexity of RC system. Here, a reconfigurable resistive switching memory (RSM) capable of implementing both diffusive and drift dynamics is demonstrated. This reconfigurability is achieved by preparing a medium with a 3D ion transport channel (ITC), enabling precise control of the metal filament that determines memristor operation. The 3D ITC-RSM operates in a volatile threshold switching (TS) mode under a weak electric field and exhibits short-term dynamics that are confirmed to be applicable as reservoir elements in RC systems. Meanwhile, the 3D ITC-RSM operates in a non-volatile bipolar switching (BS) mode under a strong electric field, and the conductance modulation metrics forming the basis of synaptic weight update are validated, which can be utilized as readout elements in the readout layer. Finally, an RC system is designed for the application of reconfigurable 3D ITC-RSM, and performs real-time recognition on Morse code datasets.

5.
J Hum Genet ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824232

ABSTRACT

INTRODUCTION: Kabuki syndrome (KS) is a rare disorder characterized by typical facial features, skeletal anomalies, fetal fingertip pad persistence, postnatal growth retardation, and intellectual disabilities. Heterozygous variants of the KMT2D and KDM6A genes are major genetic causes of KS. This study aimed to report the clinical and genetic characteristics of KS. METHODS: This study included 28 Korean patients (14 boys and 14 girls) with KS through molecular genetic testing, including direct Sanger sequencing, whole-exome sequencing, or whole-genome sequencing. RESULTS: The median age at clinical diagnosis was 18.5 months (IQR 7-58 months), and the median follow-up duration was 80.5 months (IQR 48-112 months). Molecular genetic testing identified different pathogenic variants of the KMT2D (n = 23) and KDM6A (n = 3) genes, including 15 novel variants. Patients showed typical facial features (100%), such as long palpebral fissure and eversion of the lower eyelid; intellectual disability/developmental delay (96%); short stature (79%); and congenital cardiac anomalies (75%). Although 71% experienced failure to thrive in infancy, 54% of patients showed a tendency toward overweight/obesity in early childhood. Patients with KDM6A variants demonstrated severe genotype-phenotype correlation. CONCLUSION: This study enhances the understanding of the clinical and genetic characteristics of KS.

6.
Opt Express ; 32(6): 9171-9183, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571156

ABSTRACT

This study proposes a solid-state two-dimensional beam-steering device based on an electro-optical phased array (EOPA) in thin-film lithium niobate (TFLN) and silicon nitride (SiN) hybrid platforms, thereby eliminating the requirement for the direct etching of TFLN. Electro-optic (EO) phase modulator array comprises cascaded multimode interference couplers with an SiN strip-loaded TFLN configuration, which is designed and fabricated via i-line photolithography. Each EO modulator element with an interaction region length of 1.56 cm consumed a minimum power of 3.2 pJ/π under a half-wave voltage of 3.64 V and had an estimated modulation speed of 1.2 GHz. Subsequently, an SiN dispersive antenna with a waveguide grating was tethered to the modulator array to form an EOPA, facilitating the out-of-plane radiation of highly defined near-infrared beams. A prepared EOPA utilized EO phase control and wavelength tuning near 1550 nm to achieve a field-of-view of 22° × 5° in the horizontal and vertical directions. The proposed hybrid integrated platform can potentially facilitate low-power and high-speed beam steering.

8.
Pediatr Transplant ; 28(1): e14656, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984827

ABSTRACT

BACKGROUND: Lung herniation is a rare complication of heart-lung transplantation that can be fatal owing to vascular compromise and airway obstruction. To date, only five cases of lung herniation related to heart-lung transplantation have been reported in the literature; however, to the best of our knowledge, this is the first worldwide report of heart-lung transplantation-related lung herniation in an infant. METHODS: We describe the case of lung herniation as a rare heart-lung transplantation-related complication in an infant. A 12-month-old female baby developed severe bronchopulmonary dysplasia with severe pulmonary hypertension, and she underwent extracorporeal membrane oxygenation for cardiac collapse and lung support. Then, we performed heart-lung transplantation to manage the irreversible deterioration of her lung function. After the heart-lung transplantation, we found the radiological abnormalities persisted on follow-up chest radiographs until the 13th postoperative day diagnosed as lung herniation of the right lower lobe on chest computed tomography. RESULTS: After the relocation of the herniated lung, the clinical condition of the patient improved, and the patient is currently growing without any respiratory symptoms. CONCLUSIONS: In this case report, we emphasize that clinical awareness and high suspicion of this rare complication are needed for early diagnosis and proper treatment to prevent post-transplantation morbidity and mortality related to potential ischemic injury.


Subject(s)
Heart-Lung Transplantation , Hypertension, Pulmonary , Lung Transplantation , Infant , Infant, Newborn , Humans , Female , Lung/diagnostic imaging , Hernia/diagnosis , Hernia/etiology , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Lung Transplantation/adverse effects
9.
Mol Cell ; 61(4): 625-639, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26876939

ABSTRACT

Reduction of translational fidelity often occurs in cells with high rates of protein synthesis, generating defective ribosomal products. If not removed, such aberrant proteins can be a major source of cellular stress causing human diseases. Here, we demonstrate that mTORC1 promotes the formation of immunoproteasomes for efficient turnover of defective proteins and cell survival. mTORC1 sequesters precursors of immunoproteasome ß subunits via PRAS40. When activated, mTORC1 phosphorylates PRAS40 to enhance protein synthesis and simultaneously to facilitate the assembly of the ß subunits for forming immunoproteasomes. Consequently, the PRAS40 phosphorylations play crucial roles in clearing aberrant proteins that accumulate due to mTORC1 activation. Mutations of RAS, PTEN, and TSC1, which cause mTORC1 hyperactivation, enhance immunoproteasome formation in cells and tissues. Those mutations increase cellular dependence on immunoproteasomes for stress response and survival. These results define a mechanism by which mTORC1 couples elevated protein synthesis with immunoproteasome biogenesis to protect cells against protein stress.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Multiprotein Complexes/metabolism , Phosphoproteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Survival , HCT116 Cells , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Mutation , PTEN Phosphohydrolase/genetics , Phosphorylation , Signal Transduction , Tuberous Sclerosis Complex 1 Protein , Tumor Suppressor Proteins/genetics , ras Proteins/genetics
10.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34615713

ABSTRACT

Electrification of chemical reactions is crucial to fundamentally transform our society that is still heavily dependent on fossil resources and unsustainable practices. In addition, electrochemistry-based approaches offer a unique way of catalyzing reactions by the fast and continuous alteration of applied potentials, unlike traditional thermal processes. Here, we show how the continuous cyclic application of electrode potential allows Pt nanoparticles to electrooxidize biomass-derived polyols with turnover frequency improved by orders of magnitude compared with the usual rates at fixed potential conditions. Moreover, secondary alcohol oxidation is enhanced, with a ketoses-to-aldoses ratio increased up to sixfold. The idea has been translated into the construction of a symmetric single-compartment system in a two-electrode configuration. Its operation via voltage cycling demonstrates high-rate sorbitol electrolysis with the formation of H2 as a desired coproduct at operating voltages below 1.4 V. The devised method presents a potential approach to using renewable electricity to drive chemical processes.

11.
J Fish Dis ; 47(7): e13941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523339

ABSTRACT

The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.


Subject(s)
Aquaculture , Fish Diseases , Probiotics , Quorum Sensing , Quorum Sensing/drug effects , Aquaculture/methods , Probiotics/pharmacology , Animals , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fishes , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Drug Resistance, Bacterial
12.
J Med Virol ; 95(12): e29309, 2023 12.
Article in English | MEDLINE | ID: mdl-38100632

ABSTRACT

The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Humans , Female , Animals , Mice , Human Papillomavirus Viruses , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/prevention & control , RNA, Messenger/genetics , Papillomavirus E7 Proteins/genetics , Mice, Inbred C57BL , Vaccination/methods , Immunization , Uterine Cervical Neoplasms/prevention & control
13.
Fish Shellfish Immunol ; 141: 109063, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37678478

ABSTRACT

In recent years, studies have highlighted the significant impact of probiotic treatment on the central nervous system (brain) and stress regulation through the microbiota-gut-brain axis, yet there have been limited knowledge on this axis in fish. Therefore, this study aimed to enhance the current understanding of the mechanisms underlying probiotic effects on neurotransmission and stress alleviation in fish through transcriptomic profiling. In this study, olive flounders (Paralichthys olivaceus) were subjected to two trial setups: a 1-month lab-scale trial and a 6-month field-scale trial, with and without the probiotic strain Lactococcus lactis WFLU12. RNA-Seq analysis was performed using liver samples collected from fish at one-month post-feeding (mpf) in both trials. Additionally, fish growth was monitored monthly, and serological parameters were measured at one mpf in the field-scale experiment. The results of the lab-scale trial showed that probiotic administration significantly upregulated genes related to neurotransmission, such as htr3a, mao, ddc, ntsr1, and gfra2. These findings highlight the impact of probiotics on modulating neurotransmission via the microbiota-gut-brain axis. In the field-scale experiment, fish growth was significantly promoted and the sera levels of AST, LDH, and cortisol were significantly higher in the control group compared to the probiotics group. Furthermore, genes involved in stress responses (e.g. hsp70, hsp90B1, hspE1, prdx1, and gss) and transcriptional regulators (e.g. fos, dusp1, and dusp2) exhibited significant upregulation in the control group compared to the probiotics group, indicating that probiotic administration can alleviate stress levels in fish. Overall, this study provides valuable insights into the mechanisms underlying the beneficial effects of probiotics in fish, specifically regarding their impact on neurotransmission and stress alleviation.


Subject(s)
Flounder , Probiotics , Animals , Transcriptome , Probiotics/pharmacology , Gene Expression Profiling/veterinary , Synaptic Transmission
14.
Fish Shellfish Immunol ; 138: 108844, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37225060

ABSTRACT

Climate change is one of the most important threats to farmed abalone worldwide. Although abalone is more susceptible to vibriosis at higher water temperatures, the molecular mode of action underlying this has not been fully elucidated. Therefore, this study aimed to address the high susceptibility of Halitotis discus hannai to V. harveyi infection using abalone hemocytes exposed to low and high temperatures. Abalone hemocytes were divided into four groups, 20C, 20 V, 25C, and 25 V, depending on co-culture with (V)/without (C) V. harveyi (MOI = 12.8) and incubation temperature (20 °C or 25 °C). After 3 h of incubation, hemocyte viability and phagocytic activity were measured, and RNA sequencing was performed using Illumina Novaseq. The expression of several virulence-related genes in V. harveyi was analyzed using real-time PCR. The viability of hemocytes was significantly decreased in the 25 V group compared to cells in the other groups, whereas phagocytic activity at 25 °C was significantly higher than at 20 °C. Although a number of immune-associated genes were commonly upregulated in abalone hemocyte exposed to V. harveyi, regardless of temperature, pathways and genes regarding pro-inflammatory responses (interleukin-17 and tumor necrosis factor) and apoptosis were significantly overexpressed in the 25 V group compared to the 25C group. Notably, in the apoptosis pathway, genes encoding executor caspases (casp3 and casp7) and pro-apoptotic factor, bax were significantly up-regulated only in the 25 V group, while the apoptosis inhibitor, bcl2L1 was significantly up-regulated only in the 20 V group compared to the control group at the respective temperatures. The co-culture of V. harveyi with abalone hemocytes at 25 °C up-regulated several virulence-related genes involved in quorum sensing (luxS), antioxidant activity (katA, katB, and sodC), motility (flgI), and adherence/invasion (ompU) compared to those at 20 °C. Therefore, our results showed that H. discus hannai hemocytes exposed to V. harveyi at 25 °C were highly stressed by vigorously activated inflammatory responses and that the bacterial pathogen overexpressed several virulence-related genes at the high temperature tested. The transcriptomic profile of both abalone hemocytes and V. harveyi in the present study provide insight into differential host-pathogen interactions depending on the temperature conditions and the molecular backgrounds related to increased abalone vulnerability upon global warming.


Subject(s)
Gastropoda , Vibrio Infections , Vibrio , Animals , Temperature , Vibrio/physiology , Gastropoda/genetics
15.
Mol Cell ; 57(2): 207-18, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25533187

ABSTRACT

mTORC1 plays a key role in autophagy as a negative regulator. The currently known targets of mTORC1 in the autophagy pathway mainly function at early stages of autophagosome formation. Here, we identify that mTORC1 inhibits later stages of autophagy by phosphorylating UVRAG. Under nutrient-enriched conditions, mTORC1 binds and phosphorylates UVRAG. The phosphorylation positively regulates the association of UVRAG with RUBICON, thereby enhancing the antagonizing effect of RUBICON on UVRAG-mediated autophagosome maturation. Upon dephosphorylation, UVRAG is released from RUBICON to interact with the HOPS complex, a component for the late endosome and lysosome fusion machinery, and enhances autophagosome and endosome maturation. Consequently, the dephosphorylation of UVRAG facilitates the lysosomal degradation of epidermal growth factor receptor (EGFR), reduces EGFR signaling, and suppresses cancer cell proliferation and tumor growth. These results demonstrate that mTORC1 engages in late stages of autophagy and endosome maturation, defining a broader range of mTORC1 functions in the membrane-associated processes.


Subject(s)
Endosomes/enzymology , Multiprotein Complexes/physiology , Phagosomes/enzymology , Protein Processing, Post-Translational , TOR Serine-Threonine Kinases/physiology , Tumor Suppressor Proteins/metabolism , Amino Acid Sequence , Animals , Autophagy-Related Proteins , Cell Proliferation , Class III Phosphatidylinositol 3-Kinases/metabolism , HCT116 Cells , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mechanistic Target of Rapamycin Complex 1 , Mice, Nude , Neoplasm Transplantation , Phosphorylation , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
16.
Proc Natl Acad Sci U S A ; 117(17): 9194-9201, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32295882

ABSTRACT

Promotion of C-C bonds is one of the key fundamental questions in the field of CO2 electroreduction. Much progress has occurred in developing bulk-derived Cu-based electrodes for CO2-to-multicarbons (CO2-to-C2+), especially in the widely studied class of high-surface-area "oxide-derived" copper. However, fundamental understanding into the structural characteristics responsible for efficient C-C formation is restricted by the intrinsic activity of these catalysts often being comparable to polycrystalline copper foil. By closely probing a Cu nanoparticle (NP) ensemble catalyst active for CO2-to-C2+, we show that bias-induced rapid fusion or "electrochemical scrambling" of Cu NPs creates disordered structures intrinsically active for low overpotential C2+ formation, exhibiting around sevenfold enhancement in C2+ turnover over crystalline Cu. Integrating ex situ, passivated ex situ, and in situ analyses reveals that the scrambled state exhibits several structural signatures: a distinct transition to single-crystal Cu2O cubes upon air exposure, low crystallinity upon passivation, and high mobility under bias. These findings suggest that disordered copper structures facilitate C-C bond formation from CO2 and that electrochemical nanocrystal scrambling is an avenue toward creating such catalysts.

17.
J Hous Built Environ ; : 1-15, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36619689

ABSTRACT

Since the accessory dwelling unit (ADU) has emerged as a policy alternative to increase housing stock and provide affordable options for areas impacted by housing shortages, many local governments recently adopted ADU policies that promote the construction of ADUs. Taking the City of Los Angeles as the study area, this paper examines how the city's ADU ordinance impacts the relationship of the characteristics of the properties and neighborhoods with ADU development by constructing multilevel logistic regression models. The outputs of the models suggest that the ordinance contributes to diversifying the types and locations of the properties and neighborhoods where ADUs are built. The influence of the property characteristics associated with ADU development before the implementation of the ordinance significantly diminished after the ordinance. The outputs also indicate that the ordinance probably attracted ADU developments in the areas with higher accessibility to bus transit. These findings will help planners take appropriate actions and policies that support ADU developments.

18.
Fish Shellfish Immunol ; 121: 205-214, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34990808

ABSTRACT

Heat shock protein 70s (HSP70s) are known to play vital biological processes in rainbow trout. However, information on the numerous roles and classification of many different HSP70s is insufficient. The purpose of this study was to investigate the characteristics of all HSP70s in rainbow trout using multi-dimensional genomic and transcriptomic analyses for inspecting HSP70 homologs, phylogenetic characteristics, DNA motifs, and transcription factor binding sites (TFBSs). Also, the transcriptomic results in conditions of acute thermal stress and Ichthyophthirius multifiliis infection were used to characterize the expression of all HSP70 homologs, and the isoforms of the most sensitive HSP70 were predicted in silico. A total of 23 HSP70s were identified, and they were divided into seven evolutionary groups (groups 1-7). Groups 1 and 2 had relatively longer phylogenetic distances compared to the other groups, which can speculate origin of groups 1 and 2 HSP70s would be different compared to others. With transcriptomic profiling, most HSPs belonging to group 3 showed highly sensitive responses to I. multifiliis infection, not thermal stress, but the group 6 HSP70s had the opposite expression tendencies. Likewise, the composition of the TFBS in each HSP70 was consistent with its group classification. Since TFBSs are widely known to influence transcriptomic expression, they could be one of the major reasons for the different patterns of expression within the HSP70 groups. Moreover, this study demonstrated several isoforms of HSP70a, by far the most sensitive HSP70s, under several stress environments such as hypoxia, thermal, and overcrowding stress. This is an important fundamental study to expand the understanding of HSP70s in rainbow trout as well as for selecting the most sensitive biomarkers for types of stress.


Subject(s)
Fish Proteins , HSP70 Heat-Shock Proteins , Oncorhynchus mykiss , Animals , Fish Proteins/genetics , Gene Expression Profiling , Genomics , HSP70 Heat-Shock Proteins/genetics , Oncorhynchus mykiss/genetics , Phylogeny , Stress, Physiological
19.
Fish Shellfish Immunol ; 126: 251-262, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35577319

ABSTRACT

Septin is an evolutionarily conserved family of GTP-binding proteins. Septins are known to be involved in a variety of cellular processes, including cell division, chromosome separation, cell polarity, motility, membrane dynamics, exocytosis, apoptosis, phagocytosis, DNA damage responses, and other immune responses. In this study, the sequences of the septin gene family of starry flounder were obtained using NGS sequencing, and the integrity of the sequences was verified through cloning and sequencing. At first, the amino acid sequence was annotated using the cDNA sequence, and then, the gene sequence was verified through multiple sequence alignment and phylogenetic analyses using the related conserved sequences. The septin gene family was classified into three subgroups based on the phylogenetic analysis. High conservation within the domain and homology between the genes reported in different species were confirmed. The expression level of septin gene family mRNA in each tissue of healthy starry flounder was evaluated to confirm the tissue- and gene-specific expression levels. Additionally, as a result of the analysis of mRNA expression after simulated pathogen infection, significant expression changes and characteristics were confirmed upon infection with bacteria (Streptococcus parauberis PH0710) and virus (VHSV). Based on the current results and that of previous studies, to confirm the immunological function, Septin 2, 3, and 8 were produced as recombinant proteins based on the amino acid sequences, and their role in phagocytosis was further investigated. The results of this study indicate that septin gene family plays a complex and crucial role in the host immune response to pathogens of starry flounder.


Subject(s)
Flounder , Animals , Flounder/genetics , Phylogeny , RNA, Messenger , Septins/genetics , Sequence Alignment
20.
Fish Shellfish Immunol ; 128: 360-370, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35868476

ABSTRACT

Interleukin-1 beta (IL-1ß) is transcribed by monocytes, macrophages, and dendritic cells in response to activation of toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) or cytokine signalling and causes a rapid inflammatory response to infection. IL-8, also known as chemokine C-X-C motif ligand (CXCL)-8, is regulated by IL-1ß and affects the chemotaxis of macrophages and neutrophils upon pathogen infection. In healthy red sea bream, rsbIL-1ß is most highly distributed in the liver, and rsbIL-8 is most highly distributed in the head kidney. In response to RSIV infection, rsbIL-1ß and rsbIL-8 mRNA are significantly upregulated in the kidney and spleen. This may be because the primary infection targets of RSIV are the kidney and spleen. In the gills, both genes were significantly upregulated at 7 days after RSIV infection and may be accompanied by a cytokine storm. In the liver, both genes were significantly downregulated at most observation points, which may be because the immune cells such as macrophages and dendritic cells expressing rsbIL-1ß or rsbIL-8 migrated to other tissues because the degree of RSIV infection was relatively low. Using a GFP fusion protein, it was confirmed that rsbIL-1ß and rsbIL-8 were localized to the cytoplasm of Pagrus major fin (PMF) cells. RsbIL-1ß overexpression induced the expression of interferon gamma (IFN-γ), myxovirus-resistance protein (Mx) 1, IL-8, IL-10, TNF-α, and MyD88, while rsbIL-8 overexpression induced the expression of IFN-γ, Mx1, rsbIL-1ß and TNF-α. In addition, overexpression of both genes significantly reduced the genome copies of RSIV and significantly reduced the viral titers. Therefore, rsbIL-1ß and rsbIL-8 in red sea bream play an antiviral role against RSIV through their normal signalling.


Subject(s)
DNA Virus Infections , Fish Diseases , Iridoviridae , Iridovirus , Perciformes , Sea Bream , Animals , Antiviral Agents , Interferon-gamma , Interleukin-10 , Interleukin-1beta/genetics , Interleukin-8 , Iridoviridae/physiology , Ligands , Myeloid Differentiation Factor 88 , Pathogen-Associated Molecular Pattern Molecules , Perciformes/genetics , RNA, Messenger , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL