Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
FASEB J ; 37(9): e23141, 2023 09.
Article in English | MEDLINE | ID: mdl-37566482

ABSTRACT

Insulin not only regulates glucose and/or lipid metabolism but also modulates brain neural activity. The nucleus tractus solitarius (NTS) is a key central integration site for sensory input from working skeletal muscle and arterial baroreceptors during exercise. Stimulation of the skeletal muscle exercise pressor reflex (EPR), the responses of which are buffered by the arterial baroreflex, leads to compensatory increases in arterial pressure to supply blood to working muscle. Evidence suggests that insulin signaling decreases neuronal excitability in the brain, thus antagonizing insulin receptors (IRs) may increase neuronal excitability. However, the impact of brain insulin signaling on the EPR remains fully undetermined. We hypothesized that antagonism of NTS IRs increases EPR function in normal healthy rodents. In decerebrate rats, stimulation of the EPR via electrically induced muscle contractions increased peak mean arterial pressure (MAP) responses 30 min following NTS microinjections of an IR antagonist (GSK1838705, 100 µM; Pre: Δ16 ± 10 mmHg vs. 30 min: Δ23 ± 13 mmHg, n = 11, p = .004), a finding absent in sino-aortic baroreceptor denervated rats. Intrathecal injections of GSK1838705 did not influence peak MAP responses to mechano- or chemoreflex stimulation of the hindlimb muscle. Immunofluorescence triple overlap analysis following repetitive EPR stimulation increased c-Fos overlap with EPR-sensitive nuclei and IR-positive cells relative to sham operation (p < .001). The results suggest that IR blockade in the NTS potentiates the MAP response to EPR stimulation. In addition, insulin signaling in the NTS may buffer EPR stimulated increases in blood pressure via baroreflex-mediated mechanisms during exercise.


Subject(s)
Insulins , Solitary Nucleus , Rats , Male , Animals , Solitary Nucleus/physiology , Receptor, Insulin/metabolism , Reflex , Baroreflex/physiology , Blood Pressure/physiology , Insulins/metabolism
2.
Genet Epidemiol ; 46(5-6): 285-302, 2022 07.
Article in English | MEDLINE | ID: mdl-35481584

ABSTRACT

Type 2 diabetes (T2D) is caused by genetic and environmental factors as well as gene-environment interactions. However, these interactions have not been systematically investigated. We analyzed these interactions for T2D and fasting glucose levels in three Korean cohorts, HEXA, KARE, and CAVAS, using the baseline data with a multiple regression model. Two polygenic risk scores for T2D (PRST2D ) and fasting glucose (PRSFG ) were calculated using 488 and 82 single nucleotide polymorphisms (SNP) for T2D and fasting glucose, respectively, which were extracted from large-scaled genome-wide association studies with multiethnic data. Both lifestyle risk factors and T2D-related biochemical measurements were assessed. The effect of interactions between PRST2D -triglyceride (TG) and PRST2D -total cholesterol (TC) on fasting glucose levels was observed as follows: ß ± SE = 0.0005 ± 0.0001, p = 1.06 × 10-19 in HEXA, ß ± SE = 0.0008 ± 0.0001, p = 2.08 × 10-8 in KARE for TG; ß ± SE = 0.0006 ± 0.0001, p = 2.00 × 10-6 in HEXA, ß ± SE = 0.0020 ± 0.0004, p = 2.11 × 10-6 in KARE, ß ± SE = 0.0007 ± 0.0004, p = 0.045 in CAVAS for TC. PRST2D -based classification of the participants into four groups showed that the fasting glucose levels in groups with higher PRST2D were more adversely affected by both the TG and TC. In conclusion, blood TG and TC levels may affect the fasting glucose level through interaction with T2D genetic factors, suggesting the importance of consideration of gene-environment interaction in the preventive medicine of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Blood Glucose/genetics , Cholesterol , Diabetes Mellitus, Type 2/genetics , Fasting , Gene-Environment Interaction , Genome-Wide Association Study , Glucose , Humans , Models, Genetic , Polymorphism, Single Nucleotide , Republic of Korea , Risk Factors , Triglycerides
3.
J Physiol ; 601(8): 1407-1424, 2023 04.
Article in English | MEDLINE | ID: mdl-36869605

ABSTRACT

Mechanical distortion of working skeletal muscle induces sympathoexcitation via thin fibre afferents, a reflex response known as the skeletal muscle mechanoreflex. However, to date, the receptor ion channels responsible for mechanotransduction in skeletal muscle remain largely undetermined. Transient receptor potential vanilloid 4 (TRPV4) is known to sense mechanical stimuli such as shear stress or osmotic pressure in various organs. It is hypothesized that TRPV4 in thin-fibre primary afferents innervating skeletal muscle is involved in mechanotransduction. Fluorescence immunostaining revealed that 20.1 ± 10.1% of TRPV4 positive neurons were small dorsal root ganglion (DRG) neurons that were DiI-labelled, and among them 9.5 ± 6.1% of TRPV4 co-localized with the C-fibre marker peripherin. In vitro whole-cell patch clamp recordings from cultured rat DRG neurons demonstrated that mechanically activated current amplitude was significantly attenuated after the application of the TRPV4 antagonist HC067047 compared to control (P = 0.004). Such reductions were also observed in single-fibre recordings from a muscle-nerve ex vivo preparation where HC067047 significantly decreased afferent discharge to mechanical stimulation (P = 0.007). Likewise, in an in vivo decerebrate rat preparation, the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to passive stretch of hindlimb muscle were significantly reduced by intra-arterial injection of HC067047 (ΔRSNA: P = 0.019, ΔMAP: P = 0.002). The findings suggest that TRPV4 plays an important role in mechanotransduction contributing to the cardiovascular responses evoked by the skeletal muscle mechanoreflex during exercise. KEY POINTS: Although a mechanical stimulus to skeletal muscle reflexively activates the sympathetic nervous system, the receptors responsible for mechanotransduction in skeletal muscle thin fibre afferents have not been fully identified. Evidence suggests that TRPV4 is a mechanosensitive channel that plays an important role in mechanotransduction within various organs. Immunocytochemical staining demonstrates that TRPV4 is expressed in group IV skeletal muscle afferents. In addition, we show that the TRPV4 antagonist HC067047 decreases the responsiveness of thin fibre afferents to mechanical stimulation at the muscle tissue level as well as at the level of dorsal root ganglion neurons. Moreover, we demonstrate that intra-arterial HC067047 injection attenuates the sympathetic and pressor responses to passive muscle stretch in decerebrate rats. These data suggest that antagonism of TRPV4 attenuates mechanotransduction in skeletal muscle afferents. The present study demonstrates a probable physiological role for TRPV4 in the regulation of mechanical sensation in somatosensory thin fibre muscle afferents.


Subject(s)
TRPV Cation Channels , Transient Receptor Potential Channels , Rats , Animals , TRPV Cation Channels/metabolism , Rats, Sprague-Dawley , Mechanotransduction, Cellular , Muscle, Skeletal/physiology , Reflex/physiology , Muscle Contraction/physiology , Blood Pressure/physiology
4.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R497-R512, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36779670

ABSTRACT

Stimulation of the mesencephalic locomotor region elicits exaggerated sympathetic nerve and pressor responses in spontaneously hypertensive rats (SHR) as compared with normotensive Wistar-Kyoto rats (WKY). This suggests that central command or its influence on vasomotor centers is augmented in hypertension. The decerebrate animal model possesses an ability to evoke intermittent bouts of spontaneously occurring motor activity (SpMA) and generates cardiovascular responses associated with the SpMA. It remains unknown whether the changes in sympathetic nerve activity and hemodynamics during SpMA are altered by hypertension. To test the hypothesis that the responses in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) during SpMA are exaggerated with hypertension, this study aimed to compare the responses in decerebrate, paralyzed SHR, WKY, and normotensive Sprague-Dawley (SD) rats. In all strains, an abrupt increase in RSNA occurred in synchronization with tibial motor discharge (an index of motor activity) and was followed by rises in MAP and heart rate. The centrally evoked increase in RSNA and MAP during SpMA was much greater (306 ± 110%) in SHR than WKY (187 ± 146%) and SD (165 ± 44%). Although resting baroreflex-mediated changes in RSNA were not different across strains, mechanically or pharmacologically induced elevations in MAP attenuated or abolished the RSNA increase during SpMA in WKY and SD but had no effect in SHR. It is likely that the exaggerated sympathetic nerve and pressor responses during SpMA in SHR are induced along a central command pathway independent of the arterial baroreflex and/or result from central command-induced inhibition of the baroreflex.


Subject(s)
Blood Pressure , Hypertension , Kidney , Motor Activity , Sympathetic Nervous System , Sympathetic Nervous System/physiopathology , Kidney/innervation , Kidney/physiopathology , Animals , Rats , Hypertension/physiopathology , Vasoconstriction , Rats, Inbred SHR , Rats, Inbred WKY , Arteries , Rats, Sprague-Dawley , Heart Rate , Baroreflex
5.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R13-R20, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37067428

ABSTRACT

Skeletal muscle reflexes play a crucial role in determining the magnitude of the cardiovascular response to exercise. However, evidence supporting an association between the magnitude of the pressor response and the velocity of muscle deformation has remained to be elucidated. Thus, we investigated the impact of different muscle deformation rates on the neural discharge of muscle afferents and pressor and sympathetic responses in Sprague-Dawley rats. In an ex vivo muscle-nerve preparation, action potentials elicited by sinusoidal mechanical stimuli (137 mN) at different frequencies (0.01, 0.05, 0.1, 0.2, and 0.25 Hz) were recorded in mechanosensitive group III and IV fibers. The afferent response magnitude to sine-wave stimulation significantly varied at different frequencies (ANOVA, P = 0.01). Specifically, as compared with 0.01 Hz (0.83 ± 0.96 spikes/s), the response magnitudes were significantly greater at 0.20 Hz (4.07 ± 5.04 spikes/s, P = 0.031) and 0.25 Hz (4.91 ± 5.30 spikes/s, P = 0.014). In an in vivo decerebrated rat preparation, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to passive stretch (1 kg) of hindlimb skeletal muscle at different velocities of loading (slow, medium, and fast) were measured. Pressor responses to passive stretch were significantly associated with the velocity of muscle deformation (ANOVA, P < 0.001). The MAP response to fast stretch (Δ 56 ± 12 mmHg) was greater than slow (Δ 33 ± 11 mmHg, P = 0.006) or medium (Δ 30 ± 11 mmHg, P < 0.001) stretch. Likewise, the RSNA response was related to deformation velocity (ANOVA, P = 0.024). These findings suggest that the muscle neural afferent discharge and the cardiovascular response to mechanical stimulation are associated with muscle deformation velocity.


Subject(s)
Muscle Contraction , Patient Discharge , Rats , Animals , Humans , Rats, Sprague-Dawley , Muscle Contraction/physiology , Reflex/physiology , Muscle, Skeletal/innervation , Blood Pressure/physiology
6.
J Physiol ; 600(3): 531-545, 2022 02.
Article in English | MEDLINE | ID: mdl-34967443

ABSTRACT

Systemic insulin administration evokes sympathoexcitatory actions, but the mechanisms underlying these observations are unknown. We reported that insulin sensitizes the response of thin-fibre primary afferents, as well as the dorsal root ganglion (DRG) that subserves them, to mechanical stimuli. However, little is known about the effects of insulin on primary neuronal responses to chemical stimuli. TRPV1, whose agonist is capsaicin (CAP), is widely expressed on chemically sensitive metaboreceptors and/or nociceptors. The aim of this investigation was to determine the effects of insulin on CAP-activated currents in small DRG neurons and CAP-induced action potentials in thin-fibre muscle afferents of normal healthy rodents. Additionally, we investigated whether insulin potentiates sympathetic nerve activity (SNA) responses to CAP. In whole-cell patch-clamp recordings from cultured mice DRG neurons in vitro, the fold change in CAP-activated current from pre- to post-application of insulin (n = 13) was significantly (P < 0.05) higher than with a vehicle control (n = 14). Similar results were observed in single-fibre recording experiments ex vivo as insulin potentiated CAP-induced action potentials compared to vehicle controls (n = 9 per group, P < 0.05). Furthermore, insulin receptor blockade with GSK1838705 significantly suppressed the insulin-induced augmentation in CAP-activated currents (n = 13) as well as the response magnitude of CAP-induced action potentials (n = 9). Likewise, the renal SNA response to CAP after intramuscular injection of insulin (n = 8) was significantly (P < 0.05) greater compared to vehicle (n = 9). The findings suggest that insulin potentiates TRPV1 responsiveness to CAP at the DRG and muscle tissue levels, possibly contributing to the augmentation in sympathoexcitation during activities such as physical exercise. KEY POINTS: Evidence suggests insulin centrally activates the sympathetic nervous system, and a chemical stimulus to tissues activates the sympathetic nervous system via thin fibre muscle afferents. Insulin is reported to modulate putative chemical-sensitive channels in the dorsal root ganglion neurons of these afferents. In the present study, it is demonstrated that insulin potentiates the responsiveness of thin fibre afferents to capsaicin at muscle tissue levels as well as at the level of dorsal root ganglion neurons. In addition, it is demonstrated that insulin augments the sympathetic nerve activity response to capsaicin in vivo. These data suggest that sympathoexcitation is peripherally mediated via insulin-induced chemical sensitization. The present study proposes a possible physiological role of insulin in the regulation of chemical sensitivity in somatosensory thin fibre muscle afferents.


Subject(s)
Capsaicin , Ganglia, Spinal , Animals , Capsaicin/pharmacology , Ganglia, Spinal/physiology , Insulin/pharmacology , Mice , Muscle Fibers, Skeletal , Neurons/physiology , Rats , Rats, Sprague-Dawley , Rodentia , TRPV Cation Channels/physiology
7.
Exerc Sport Sci Rev ; 49(3): 157-167, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33965976

ABSTRACT

Patients with diabetes display heightened blood pressure response to exercise, but the underlying mechanism remains to be elucidated. There is no direct evidence that insulin resistance (hyperinsulinemia or hyperglycemia) impacts neural cardiovascular control during exercise. We propose a novel paradigm in which hyperinsulinemia or hyperglycemia significantly influences neural regulatory pathways controlling the circulation during exercise in diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Hyperglycemia , Hyperinsulinism , Insulin Resistance , Exercise , Humans , Insulin
8.
Circulation ; 139(11): 1422-1434, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30612451

ABSTRACT

BACKGROUND: Inorganic phosphate (Pi) is used extensively as a preservative and a flavor enhancer in the Western diet. Physical inactivity, a common feature of Western societies, is associated with increased cardiovascular morbidity and mortality. It is unknown whether dietary Pi excess contributes to exercise intolerance and physical inactivity. METHODS: To determine an association between Pi excess and physical activity in humans, we assessed the relationship between serum Pi and actigraphy-determined physical activity level, as well as left ventricular function by cardiac magnetic resonance imaging, in DHS-2 (Dallas Heart Study phase 2) participants after adjusting for relevant variables. To determine direct effects of dietary Pi on exercise capacity, oxygen uptake, serum nonesterified fatty acid, and glucose were measured during exercise treadmill test in C57/BL6 mice fed either a high-Pi (2%) or normal-Pi (0.6%) diet for 12 weeks. To determine the direct effect of Pi on muscle metabolism and expression of genes involved in fatty acid metabolism, additional studies in differentiated C2C12 myotubes were conducted after subjecting to media containing 1 to 3 mmol/L Pi (pH 7.0) to simulate in vivo phosphate conditions. RESULTS: In participants of the DHS-2 (n=1603), higher serum Pi was independently associated with reduced time spent in moderate to vigorous physical activity ( P=0.01) and increased sedentary time ( P=0.004). There was no association between serum Pi and left ventricular ejection fraction or volumes. In animal studies, compared with the control diet, consumption of high-Pi diet for 12 weeks did not alter body weight or left ventricular function but reduced maximal oxygen uptake, treadmill duration, spontaneous locomotor activity, fat oxidation, and fatty acid levels and led to downregulation of genes involved in fatty acid synthesis, release, and oxidation, including Fabp4, Hsl, Fasn, and Pparγ, in muscle. Similar results were recapitulated in vitro by incubating C2C12 myotubes with high-Pi media. CONCLUSIONS: Our data demonstrate a detrimental effect of dietary Pi excess on skeletal muscle fatty acid metabolism and exercise capacity that is independent of obesity and cardiac contractile function. Dietary Pi may represent a novel and modifiable target to reduce physical inactivity associated with the Western diet.


Subject(s)
Energy Metabolism/drug effects , Exercise Tolerance/drug effects , Fatty Acids/metabolism , Muscle, Skeletal/drug effects , Phosphates/adverse effects , Phosphorus, Dietary/adverse effects , Animals , Cell Line , Energy Metabolism/genetics , Exercise , Exercise Tolerance/genetics , Gene Expression Regulation , Humans , Male , Mice, Inbred C57BL , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxygen Consumption , Phosphates/administration & dosage , Phosphates/metabolism , Phosphorus, Dietary/administration & dosage , Phosphorus, Dietary/metabolism , Sedentary Behavior
9.
J Physiol ; 597(20): 5049-5062, 2019 10.
Article in English | MEDLINE | ID: mdl-31468522

ABSTRACT

KEY POINTS: Insulin is known to activate the sympathetic nervous system centrally. A mechanical stimulus to tissues activates the sympathetic nervous system via thin fibre afferents. Evidence suggests that insulin modulates putative mechanosensitive channels in the dorsal root ganglion neurons of these afferents. In the present study, we report the novel finding that insulin augments the mechanical responsiveness of thin fibre afferents not only at dorsal root ganglion, but also at muscle tissue levels. Our data suggest that sympathoexcitation is mediated via the insulin-induced mechanical sensitization peripherally. The present study proposes a novel physiological role of insulin in the regulation of mechanical sensitivity in somatosensory thin fibre afferents. ABSTRACT: Insulin activates the sympathetic nervous system, although the mechanism underlying insulin-induced sympathoexcitation remains to be determined. A mechanical stimulus to tissues such as skin and/or skeletal muscle, no matter whether the stimulation is noxious or not, activates the sympathetic nervous system via thin fibre afferents. Evidence suggests that insulin modulates putative mechanosensitive channels in the dorsal root ganglion (DRG) neurons of these afferents. Accordingly, we investigated whether insulin augments whole-cell current responses to mechanical stimuli in small DRG neurons of normal healthy mice. We performed whole-cell patch clamp recordings using cultured DRG neurons and observed mechanically-activated (MA) currents induced by mechanical stimuli applied to the cell surface. Local application of vehicle solution did not change MA currents or mechanical threshold in cultured DRG neurons. Insulin (500 mU mL-1 ) significantly augmented the amplitude of MA currents (P < 0.05) and decreased the mechanical threshold (P < 0.05). Importantly, pretreatment with the insulin receptor antagonist, GSK1838705, significantly suppressed the insulin-induced potentiation of the mechanical response. We further examined the impact of insulin on thin fibre muscle afferent activity in response to mechanical stimuli in normal healthy rats in vitro. Using a muscle-nerve preparation, we recorded single group IV fibre activity to a ramp-shaped mechanical stimulation. Insulin significantly decreased mechanical threshold (P < 0.05), although it did not significantly increase the response magnitude to the mechanical stimulus. In conclusion, these data suggest that insulin augments the mechanical responsiveness of small DRG neurons and potentially sensitizes group IV afferents to mechanical stimuli at the muscle tissue level, possibly contributing to insulin-induced sympathoexcitation.


Subject(s)
Action Potentials/physiology , Ganglia, Spinal/cytology , Insulin/pharmacology , Mechanotransduction, Cellular/drug effects , Muscle Fibers, Skeletal/physiology , Neurons/physiology , Afferent Pathways/drug effects , Animals , Ganglia, Spinal/physiology , Insulin/physiology , Male , Mechanotransduction, Cellular/physiology , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Receptor, Insulin/antagonists & inhibitors
10.
Curr Opin Nephrol Hypertens ; 28(4): 345-351, 2019 07.
Article in English | MEDLINE | ID: mdl-30883391

ABSTRACT

PURPOSE OF REVIEW: The purpose of this study is to review the current literature related to the role of inorganic phosphate in the pathogenesis of hypertension. RECENT FINDINGS: An increasing number of publications have revealed a detrimental role of inorganic phosphate, which is commonly used as a flavor enhancer or preservative in the processed food, in promoting hypertension in otherwise healthy individuals. Animal experimental data indicate that dietary phosphate excess engages multiple mechanisms that promote hypertension, including overactivation of the sympathetic nervous system, increased vascular stiffness, impaired endothelium-dependent vasodilation, as well as increased renal sodium absorption or renal injury. These effects may be explained by direct effects of high extracellular phosphate levels or increase in phosphaturic hormones such as fibroblast growth factor 23, or downregulation of klotho, a transmembrane protein expressed in multiple organs which possess antiaging property. SUMMARY: Dietary phosphate, particularly inorganic phosphate, is an emerging risk factor for hypertension which is ubiquitous in the western diet. Large randomized clinical trials are needed to determine if lowering dietary phosphate content constitutes an effective nonpharmacologic intervention for prevention and treatment of hypertension.


Subject(s)
Hypertension/etiology , Phosphates/administration & dosage , Animals , Diet , Humans , Phosphates/metabolism , Phosphorus, Dietary , Sodium/metabolism
11.
Am J Physiol Regul Integr Comp Physiol ; 317(2): R270-R279, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31091155

ABSTRACT

The cardiovascular responses to exercise are potentiated in patients with type 2 diabetes mellitus (T2DM). However, the underlying mechanisms causing this abnormality remain unknown. Central command (CC) and the exercise pressor reflex (EPR) are known to contribute significantly to cardiovascular control during exercise. Thus these neural signals are viable candidates for the generation of the abnormal circulatory regulation in this disease. We hypothesized that augmentations in CC as well as EPR function contribute to the heightened cardiovascular responses during exercise in T2DM. To test this hypothesis, changes in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in response to electrical stimulation of mesencephalic locomotor region (MLR), a putative component of the central command pathway, and activation of the EPR, evoked by electrically induced hindlimb muscle contraction, were examined in decerebrate animals. Sprague-Dawley rats were given either a normal diet (control) or a high-fat diet (14-16 wk) in combination with two low doses (35 mg/kg week 1, 25 mg/kg week 2) of streptozotocin (T2DM). The changes in MAP and RSNA responses to MLR stimulation were significantly greater in T2DM compared with control (2,739 ± 123 vs. 1,298 ± 371 mmHg/s, 6,326 ± 1,621 vs. 1,390 ± 277%/s, respectively, P < 0.05). Similarly, pressor and sympathetic responses to activation of the EPR in diabetic animals were significantly augmented compared with control animals (436 ± 74 vs. 134 ± 44 mmHg/s, 645 ± 135 vs. 139 ± 65%/s, respectively, P < 0.05). These findings provide the first evidence that CC and the EPR may generate the exaggerated rise in sympathetic activity and blood pressure during exercise in T2DM.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Hypertension/physiopathology , Sympathetic Nervous System/physiopathology , Animals , Arterial Pressure/physiology , Baroreflex/physiology , Blood Pressure/physiology , Kidney/innervation , Male , Physical Conditioning, Animal/physiology , Rats, Sprague-Dawley , Reflex/physiology
12.
AJR Am J Roentgenol ; 211(2): W84-W91, 2018 08.
Article in English | MEDLINE | ID: mdl-29792740

ABSTRACT

OBJECTIVE: We aimed to assess CT and 18F-FDG PET/CT findings of colloid adenocarcinoma of the lung in seven patients. MATERIALS AND METHODS: From 2010 to 2017, seven patients with surgically proven colloid adenocarcinoma of the lung were identified. CT (both enhanced and unenhanced) and PET/CT findings were analyzed, and the imaging features were compared with histopathologic reports. Clinical and demographic features were also analyzed. RESULTS: In all cases except one, tumors showed low attenuation on unenhanced CT scans, ranging in attenuation from -16.5 to 20.7 HU (median, 9.2 HU). After contrast medium injection, enhancement was scant, so net enhancement ranged from 0.4 to 29.0 HU (median, 4.1 HU). All tumors had a lobulated contour. Stippled calcifications within the tumor were seen in one patient. The maximum standardized uptake value of tumors on PET/CT ranged from 1.5 to 4.5 (median, 3.5). In six of seven patients, FDG accumulation was seen in the tumor walls (n = 3, curvilinear uptake) or in both the tumor walls and tumor septa (n = 3, crisscross uptake). Six patients were alive without recurrence after a median follow-up period of 2.3 years (range, 2 months to 5 years). In one patient, who was alive at follow-up 4 years after imaging and had received adjuvant concurrent chemoradiation therapy after lobectomy, recurrent disease was detected 6 months after completion of the therapy. CONCLUSION: On CT, pulmonary colloid adenocarcinomas present as lobulated homogeneously low-attenuation tumors. At PET, curvilinear or crisscross FDG uptake is seen within the tumor where tumor cells are lining the walls or septal structures.


Subject(s)
Adenocarcinoma, Mucinous/diagnostic imaging , Adenocarcinoma/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography , Tomography, X-Ray Computed , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Adenocarcinoma, Mucinous/pathology , Adenocarcinoma, Mucinous/therapy , Aged , Combined Modality Therapy , Contrast Media , Female , Fluorodeoxyglucose F18 , Humans , Iohexol/analogs & derivatives , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lymph Node Excision , Male , Middle Aged , Neoplasm Staging , Prognosis , Radiopharmaceuticals , Retrospective Studies
13.
BMC Cardiovasc Disord ; 17(1): 301, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29284413

ABSTRACT

BACKGROUND: Left ventricular (LV) diastolic dysfunction occurs earlier in the ischemic cascade than LV systolic dysfunction and electrocardiographic changes. Diastolic wall strain (DWS) has been proposed as a marker of LV diastolic stiffness. Therefore, the objectives of this study were to define the relationship between DWS and coronary revascularization and to evaluate other echocardiographic parameters in patients with stable angina who were undergoing coronary angiography (CAG). METHODS: Four hundred forty patients [mean age: 61 ± 10; 249 (57%) men] undergoing CAG and with normal left ventricular systolic function without regional wall motion abnormalities were enrolled. Among them, 128 (29%) patients underwent revascularization (percutaneous intervention: 117, bypass surgery: 11). All patients underwent echocardiography before CAG and the DWS was defined using posterior wall thickness (PWT) measurements from standard echocardiographic images [DWS = PWT(systole)-PWT(diastole)/PWT(systole)]. RESULTS: Patients who underwent revascularization had a significantly lower DWS than those who did not (0.26 ± 0.08 vs. 0.38 ± 0.09, p < 0.001). Age was comparable between the two groups (61 ± 9 vs. 60 ± 11, p = 0.337), but the proportion of males was significantly higher among patients who underwent revascularization (69 vs. 52%, p = 0.001). The LV ejection fraction was similar but slightly decreased (60.9 ± 5.7 vs. 62.4 ± 6.2%, p = 0.019) and the E/E' ratio was elevated (10.3 ± 4.0 vs. 9.0 ± 3.1, p < 0.001) among patients who underwent revascularization. In multiple regression analysis, lower DWS was an independent predictor of revascularization (cut-off value: 0.34; sensitivity: 89%; AUC: 0.870; SE: 0.025; p < 0.001). CONCLUSION: DWS, a simple parameter that can be calculated from routine 2D echocardiography, is inversely associated with the presence of coronary artery disease and the need for revascularization.


Subject(s)
Angina, Stable/therapy , Coronary Artery Bypass , Coronary Artery Disease/therapy , Percutaneous Coronary Intervention , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left , Aged , Angina, Stable/diagnostic imaging , Angina, Stable/etiology , Angina, Stable/physiopathology , Chi-Square Distribution , Coronary Artery Bypass/adverse effects , Coronary Artery Disease/complications , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Diastole , Echocardiography, Doppler , Female , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , Odds Ratio , Percutaneous Coronary Intervention/adverse effects , Retrospective Studies , Risk Factors , Time Factors , Treatment Outcome , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology
14.
Biochem Biophys Res Commun ; 448(2): 182-8, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24768635

ABSTRACT

Calcineurin inhibitors such as cyclosporin A (CsA) are widely used to treat organ transplantation-associated complications. However, CsA use is limited due to renal dysfunction. This study attempts to characterize the mechanism of CsA-induced nephrotoxicity using a human embryonic kidney cell line (HK-2). We performed microarray-based whole-genome expression analysis in HK-2 cells. CsA treatment induced the expression of endoplasmic reticulum (ER) stress-related and apoptosis-inducing genes at 6 and 24h, respectively, indicating that ER-stress predisposed the cells to apoptosis. G1 phase cell-cycle arrest was also observed via ER stress in CsA-treated cells. Furthermore, we found an inverse relationship between activating transcription factor 3 (ATF3), a stress-inducible protein, and C/EBP homologous protein (CHOP), an apoptosis-inducing protein. Moreover, when ATF3 knockdown cells were exposed to CsA, a prompt induction of CHOP was observed, which stimulated ROS production and induced cell death-related genes as compared to wild type. Taken together, our data demonstrate that ATF3 plays a pivotal role in the attenuation of CsA-induced nephrotoxicity by downregulating CHOP and ROS production mediated by ER stress.


Subject(s)
Activating Transcription Factor 3/metabolism , Cyclosporine/toxicity , Endoplasmic Reticulum Stress/drug effects , Kidney/drug effects , Transcription Factor CHOP/genetics , Activating Transcription Factor 3/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Line/drug effects , Down-Regulation , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Kidney/embryology , Kidney/pathology , Reactive Oxygen Species/metabolism , Transcription Factor CHOP/metabolism
15.
Clin Sci (Lond) ; 125(11): 513-20, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23786536

ABSTRACT

Obesity increases linearly with age and is associated with impaired vascular endothelial function and increased risk of cardiovascular disease. MRs (mineralocorticoid receptors) contribute to impaired vascular endothelial function in cardiovascular disease; however, their role in uncomplicated human obesity is unknown. Because plasma aldosterone levels are elevated in obesity and adipocytes may be a source of aldosterone, we hypothesized that MRs modulate vascular endothelial function in older adults in an adiposity-dependent manner. To test this hypothesis, we administered MR blockade (eplerenone; 100 mg/day) for 1 month in a balanced randomized double-blind placebo-controlled cross-over study to 22 older adults (ten men, 55-79 years) varying widely in adiposity [BMI (body mass index): 20-45 kg/m²], but who were free from overt cardiovascular disease. We evaluated vascular endothelial function [brachial artery FMD (flow-mediated dilation)] via ultrasonography) and oxidative stress (plasma F2-isoprostanes and vascular endothelial cell protein expression of nitrotyrosine and NADPH oxidase p47phox) during placebo and MR blockade. In the whole group, oxidative stress (P>0.05) and FMD did not change with MR blockade (6.39 ± 0.67 compared with 6.23 ± 0.73%; P=0.7). However, individual improvements in FMD in response to eplerenone were associated with higher total body fat (BMI: r=0.45, P=0.02; and dual-energy X-ray absorptiometry-derived percentage body fat: r=0.50, P=0.009) and abdominal fat (total: r=0.61, P=0.005; visceral: r=0.67, P=0.002; and subcutaneous: r=0.48, P=0.03). In addition, greater improvements in FMD with eplerenone were related to higher baseline fasting glucose (r=0.53, P=0.01). MRs influence vascular endothelial function in an adiposity-dependent manner in healthy older adults.


Subject(s)
Mineralocorticoid Receptor Antagonists/pharmacology , Obesity/physiopathology , Receptors, Mineralocorticoid/physiology , Spironolactone/analogs & derivatives , Abdominal Fat/metabolism , Abdominal Fat/physiopathology , Aged , Body Composition , Body Mass Index , Brachial Artery/diagnostic imaging , Brachial Artery/drug effects , Brachial Artery/physiopathology , Cross-Over Studies , Double-Blind Method , Endothelial Cells/metabolism , Eplerenone , F2-Isoprostanes/blood , Female , Humans , Male , Middle Aged , NADPH Oxidases/metabolism , Obesity/diagnostic imaging , Obesity/metabolism , Oxidative Stress/drug effects , Spironolactone/pharmacology , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Ultrasonography
16.
Sci Rep ; 13(1): 9573, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311821

ABSTRACT

While a wide range of treatments, including medical therapies and surgery, are used to manage endometriosis, the characteristics and treatment status of patients who received these treatments have not been investigated in Korea. This study analyzed the Korean Health Insurance Review & Assessment Service-National Patient Sample (HIRA-NPS) data from 2010 to 2019 with 7530 patients diagnosed with endometriosis. Annual trends in the types of visit and surgery, medication prescriptions and associated costs were investigated. The analysis showed that surgery slightly decreased among the types of utilized healthcare services (2010: 16.3, 2019: 12.7), dienogest prescription rapidly increased due to national health insurance coverage from 2013 (2013: 12.1, 2019: 36.0), and the use of gonadotrophin-releasing hormone analogues decreased (2010: 33.6, 2019: 16.4). There was no significant change in total and outpatient costs per person over time. Regarding endometriosis treatment, conservative treatment mainly based on prescribed medications has been gradually replacing surgery. Particularly, the listing of dienogest for national health insurance coverage might have affected the trend. However, there were no significant changes in terms of total and medication costs per person.


Subject(s)
Endometriosis , Female , Humans , Endometriosis/drug therapy , Endometriosis/epidemiology , Republic of Korea/epidemiology , Conservative Treatment , Drug Prescriptions , Insurance, Health
17.
Clin Transl Allergy ; 13(7): e12282, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37488738

ABSTRACT

BACKGROUND: The extent of differences between genetic risks associated with various asthma subtypes is still unknown. To better understand the heterogeneity of asthma, we employed an unsupervised method to identify genetic variants specifically associated with asthma subtypes. Our goal was to gain insight into the genetic basis of asthma. METHODS: In this study, we utilized the UK Biobank dataset to select asthma patients (All asthma, n = 50,517) and controls (n = 283,410). We excluded 14,431 individuals who had no information on predicted values of forced expiratory volume in one second percent (FEV1%) and onset age, resulting in a final total of 36,086 asthma cases. We conducted k-means clustering based on asthma onset age and predicted FEV1% using these samples (n = 36,086). Cluster-specific genome-wide association studies were then performed, and heritability was estimated via linkage disequilibrium score regression. To further investigate the pathophysiology, we conducted eQTL analysis with GTEx and gene-set enrichment analysis with FUMA. RESULTS: Clustering resulted in four distinct clusters: early onset asthmanormalLF (early onset with normal lung function, n = 8172), early onset asthmareducedLF (early onset with reduced lung function, n = 8925), late-onset asthmanormalLF (late-onset with normal lung function, n = 12,481), and late-onset asthmareducedLF (late-onset with reduced lung function, n = 6508). Our GWASs in four clusters and in All asthma sample identified 5 novel loci, 14 novel signals, and 51 cluster-specific signals. Among clusters, early onset asthmanormalLF and late-onset asthmareducedLF were the least correlated (rg  = 0.37). Early onset asthmareducedLF showed the highest heritability explained by common variants (h2  = 0.212) and was associated with the largest number of variants (71 single nucleotide polymorphisms). Further, the pathway analysis conducted through eQTL and gene-set enrichment analysis showed that the worsening of symptoms in early onset asthma correlated with lymphocyte activation, pathogen recognition, cytokine receptor activation, and lymphocyte differentiation. CONCLUSIONS: Our findings suggest that early onset asthmareducedLF was the most genetically predisposed cluster, and that asthma clusters with reduced lung function were genetically distinct from clusters with normal lung function. Our study revealed the genetic variation between clusters that were segmented based on onset age and lung function, providing an important clue for the genetic mechanism of asthma heterogeneity.

18.
Commun Biol ; 6(1): 324, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966243

ABSTRACT

Gene-environment (G×E) interaction could partially explain missing heritability in traits; however, the magnitudes of G×E interaction effects remain unclear. Here, we estimate the heritability of G×E interaction for body mass index (BMI) by subjecting genome-wide interaction study data of 331,282 participants in the UK Biobank to linkage disequilibrium score regression (LDSC) and linkage disequilibrium adjusted kinships-software for estimating SNP heritability from summary statistics (LDAK-SumHer) analyses. Among 14 obesity-related lifestyle factors, MET score, pack years of smoking, and alcohol intake frequency significantly interact with genetic factors in both analyses, accounting for the partial variance of BMI. The G×E interaction heritability (%) and standard error of these factors by LDSC and LDAK-SumHer are as follows: MET score, 0.45% (0.12) and 0.65% (0.24); pack years of smoking, 0.52% (0.13) and 0.93% (0.26); and alcohol intake frequency, 0.32% (0.10) and 0.80% (0.17), respectively. Moreover, these three factors are partially validated for their interactions with genetic factors in other obesity-related traits, including waist circumference, hip circumference, waist-to-hip ratio adjusted with BMI, and body fat percentage. Our results suggest that G×E interaction may partly explain the missing heritability in BMI, and two G×E interaction loci identified could help in understanding the genetic architecture of obesity.


Subject(s)
Gene-Environment Interaction , Obesity , Humans , Body Mass Index , Obesity/genetics , Phenotype , Smoking/genetics
19.
BMC Med Genomics ; 16(1): 259, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875944

ABSTRACT

BACKGROUND: More than 200 asthma-associated genetic variants have been identified in genome-wide association studies (GWASs). Expression quantitative trait loci (eQTL) data resources can help identify causal genes of the GWAS signals, but it can be difficult to find an eQTL that reflects the disease state because most eQTL data are obtained from normal healthy subjects. METHODS: We performed a blood eQTL analysis using transcriptomic and genotypic data from 433 Korean asthma patients. To identify asthma-related genes, we carried out colocalization, Summary-based Mendelian Randomization (SMR) analysis, and Transcriptome-Wide Association Study (TWAS) using the results of asthma GWASs and eQTL data. In addition, we compared the results of disease eQTL data and asthma-related genes with two normal blood eQTL data from Genotype-Tissue Expression (GTEx) project and a Japanese study. RESULTS: We identified 340,274 cis-eQTL and 2,875 eGenes from asthmatic eQTL analysis. We compared the disease eQTL results with GTEx and a Japanese study and found that 64.1% of the 2,875 eGenes overlapped with the GTEx eGenes and 39.0% with the Japanese eGenes. Following the integrated analysis of the asthmatic eQTL data with asthma GWASs, using colocalization and SMR methods, we identified 15 asthma-related genes specific to the Korean asthmatic eQTL data. CONCLUSIONS: We provided Korean asthmatic cis-eQTL data and identified asthma-related genes by integrating them with GWAS data. In addition, we suggested these asthma-related genes as therapeutic targets for asthma. We envisage that our findings will contribute to understanding the etiological mechanisms of asthma and provide novel therapeutic targets.


Subject(s)
Asthma , Genome-Wide Association Study , Humans , Genome-Wide Association Study/methods , Genetic Predisposition to Disease , Asthma/genetics , Gene Expression Profiling , Republic of Korea , Polymorphism, Single Nucleotide
20.
Mol Cancer Ther ; 22(9): 1100-1111, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37440705

ABSTRACT

As a result of tumor heterogeneity and solid cancers harboring multiple molecular defects, precision medicine platforms in oncology are most effective when both genetic and pharmacologic determinants of a tumor are evaluated. Expandable patient-derived xenograft (PDX) mouse tumor and corresponding PDX culture (PDXC) models recapitulate many of the biological and genetic characteristics of the original patient tumor, allowing for a comprehensive pharmacogenomic analysis. Here, the somatic mutations of 23 matched patient tumor and PDX samples encompassing four cancers were first evaluated using next-generation sequencing (NGS). 19 antitumor agents were evaluated across 78 patient-derived tumor cultures using clinically relevant drug exposures. A binarization threshold sensitivity classification determined in culture (PDXC) was used to identify tumors that best respond to drug in vivo (PDX). Using this sensitivity classification, logic models of DNA mutations were developed for 19 antitumor agents to predict drug response. We determined that the concordance of somatic mutations across patient and corresponding PDX samples increased as variant allele frequency increased. Notable individual PDXC responses to specific drugs, as well as lineage-specific drug responses were identified. Robust responses identified in PDXC were recapitulated in vivo in PDX-bearing mice and logic modeling determined somatic gene mutation(s) defining response to specific antitumor agents. In conclusion, combining NGS of primary patient tumors, high-throughput drug screen using clinically relevant doses, and logic modeling, can provide a platform for understanding response to therapeutic drugs targeting cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Animals , Mice , Xenograft Model Antitumor Assays , Pharmacogenomic Testing , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/pharmacology , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL