Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 84(14): 2601-2617.e12, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38925115

ABSTRACT

The evolutionarily conserved HIRA/Hir histone chaperone complex and ASF1a/Asf1 co-chaperone cooperate to deposit histone (H3/H4)2 tetramers on DNA for replication-independent chromatin assembly. The molecular architecture of the HIRA/Hir complex and its mode of histone deposition have remained unknown. Here, we report the cryo-EM structure of the S. cerevisiae Hir complex with Asf1/H3/H4 at 2.9-6.8 Å resolution. We find that the Hir complex forms an arc-shaped dimer with a Hir1/Hir2/Hir3/Hpc2 stoichiometry of 2/4/2/4. The core of the complex containing two Hir1/Hir2/Hir2 trimers and N-terminal segments of Hir3 forms a central cavity containing two copies of Hpc2, with one engaged by Asf1/H3/H4, in a suitable position to accommodate a histone (H3/H4)2 tetramer, while the C-terminal segments of Hir3 harbor nucleic acid binding activity to wrap DNA around the Hpc2-assisted histone tetramer. The structure suggests a model for how the Hir/Asf1 complex promotes the formation of histone tetramers for their subsequent deposition onto DNA.


Subject(s)
Cell Cycle Proteins , Cryoelectron Microscopy , Histone Chaperones , Histones , Protein Binding , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/chemistry , Histones/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Histone Chaperones/metabolism , Histone Chaperones/chemistry , Histone Chaperones/genetics , Models, Molecular , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Protein Multimerization , Binding Sites , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Protein Interaction Domains and Motifs
2.
Mol Cell ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39321804

ABSTRACT

The eukaryotic transcriptional Mediator comprises a large core (cMED) and a dissociable CDK8 kinase module (CKM). cMED recruits RNA polymerase II (RNA Pol II) and promotes pre-initiation complex formation in a manner repressed by the CKM through mechanisms presently unknown. Herein, we report cryoelectron microscopy structures of the complete human Mediator and its CKM. The CKM binds to multiple regions on cMED through both MED12 and MED13, including a large intrinsically disordered region (IDR) in the latter. MED12 and MED13 together anchor the CKM to the cMED hook, positioning CDK8 downstream and proximal to the transcription start site. Notably, the MED13 IDR obstructs the recruitment of RNA Pol II/MED26 onto cMED by direct occlusion of their respective binding sites, leading to functional repression of cMED-dependent transcription. Combined with biochemical and functional analyses, these structures provide a conserved mechanistic framework to explain the basis for CKM-mediated repression of cMED function.

3.
Mol Cell ; 83(4): 574-588.e11, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36731470

ABSTRACT

Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.


Subject(s)
RNA Polymerase II , Saccharomyces cerevisiae Proteins , RNA Polymerase II/metabolism , Cryoelectron Microscopy , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Promoter Regions, Genetic , Transcription, Genetic , Mediator Complex/genetics , Transcription Initiation, Genetic
4.
Mol Cell ; 82(3): 660-676.e9, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051353

ABSTRACT

Previous structural studies of the initiation-elongation transition of RNA polymerase II (pol II) transcription have relied on the use of synthetic oligonucleotides, often artificially discontinuous to capture pol II in the initiating state. Here, we report multiple structures of initiation complexes converted de novo from a 33-subunit yeast pre-initiation complex (PIC) through catalytic activities and subsequently stalled at different template positions. We determine that PICs in the initially transcribing complex (ITC) can synthesize a transcript of ∼26 nucleotides before transitioning to an elongation complex (EC) as determined by the loss of general transcription factors (GTFs). Unexpectedly, transition to an EC was greatly accelerated when an ITC encountered a downstream EC stalled at promoter proximal regions and resulted in a collided head-to-end dimeric EC complex. Our structural analysis reveals a dynamic state of TFIIH, the largest of GTFs, in PIC/ITC with distinct functional consequences at multiple steps on the pathway to elongation.


Subject(s)
RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Transcription Initiation, Genetic , Cryoelectron Microscopy , Gene Expression Regulation, Fungal , Models, Molecular , Promoter Regions, Genetic , Protein Conformation , RNA Polymerase II/genetics , RNA Polymerase II/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Structure-Activity Relationship , Time Factors , Transcription Elongation, Genetic , Transcription Factors, TFII/genetics , Transcription Factors, TFII/metabolism
5.
Anal Chem ; 95(12): 5187-5195, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36916610

ABSTRACT

Post-transcriptional modifications of RNA strongly influence the RNA structure and function. Recent advances in RNA sequencing and mass spectrometry (MS) methods have identified over 140 of these modifications on a wide variety of RNA species. Most next-generation sequencing approaches can only map one RNA modification at a time, and while MS can assign multiple modifications simultaneously in an unbiased manner, MS cannot accurately catalog and assign RNA modifications in complex biological samples due to limitations in the fragment length and coverage depth. Thus, a facile method to identify novel RNA modifications while simultaneously locating them in the context of their RNA sequences is still lacking. We combined two orthogonal modes of RNA ion separation before MS identification: high-field asymmetric ion mobility separation (FAIMS) and electrochemically modulated liquid chromatography (EMLC). FAIMS RNA MS increases both coverage and throughput, while EMLC LC-MS orthogonally separates RNA molecules of different lengths and charges. The combination of the two methods offers a broadly applicable platform to improve the length and depth of MS-based RNA sequencing while providing contextual access to the analysis of RNA modifications.


Subject(s)
Ion Mobility Spectrometry , RNA , Base Sequence , Mass Spectrometry/methods , Chromatography, Liquid , Ion Mobility Spectrometry/methods
6.
J Virol ; 96(17): e0094922, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36037477

ABSTRACT

Epstein-Barr nuclear antigen 1 (EBNA1) is a multifunctional viral-encoded DNA-binding protein essential for Epstein-Barr virus (EBV) DNA replication and episome maintenance. EBNA1 binds to two functionally distinct elements at the viral origin of plasmid replication (oriP), termed the dyad symmetry (DS) element, required for replication initiation and the family of repeats (FR) required for episome maintenance. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the EBNA1 DNA binding domain (DBD) from amino acids (aa) 459 to 614 and its interaction with two tandem sites at the DS and FR. We found that EBNA1 induces a strong DNA bending angle in the DS, while the FR is more linear. The N-terminal arm of the DBD (aa 444 to 468) makes extensive contact with DNA as it wraps around the minor groove, with some conformational variation among EBNA1 monomers. Mutation of variable-contact residues K460 and K461 had only minor effects on DNA binding but had abrogated oriP-dependent DNA replication. We also observed that the AT-rich intervening DNA between EBNA1 binding sites in the FR can be occupied by the EBNA1 AT hook, N-terminal domain (NTD) aa 1 to 90 to form a Zn-dependent stable complex with EBNA1 DBD on a 2×FR DNA template. We propose a model showing EBNA1 DBD and NTD cobinding at the FR and suggest that this may contribute to the oligomerization of viral episomes important for maintenance during latent infection. IMPORTANCE EBV latent infection is causally linked to diverse cancers and autoimmune disorders. EBNA1 is the viral-encoded DNA binding protein required for episomal maintenance during latent infection and is consistently expressed in all EBV tumors. The interaction of EBNA1 with different genetic elements confers different viral functions, such as replication initiation at DS and chromosome tethering at FR. Here, we used cryo-EM to determine the structure of the EBNA1 DNA-binding domain (DBD) bound to two tandem sites at the DS and at the FR. We also show that the NTD of EBNA1 can interact with the AT-rich DNA sequence between tandem EBNA1 DBD binding sites in the FR. These results provide new information on the mechanism of EBNA1 DNA binding at DS and FR and suggest a higher-order oligomeric structure of EBNA1 bound to FR. Our findings have implications for targeting EBNA1 in EBV-associated disease.


Subject(s)
Epstein-Barr Virus Nuclear Antigens/chemistry , Herpesvirus 4, Human/chemistry , Replication Origin , Binding Sites , Cryoelectron Microscopy , DNA Replication , DNA-Binding Proteins/metabolism , Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens/metabolism , Epstein-Barr Virus Nuclear Antigens/ultrastructure , Herpesvirus 4, Human/metabolism , Humans , Latent Infection , Plasmids , Virus Replication
7.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003443

ABSTRACT

Elevated intraocular pressure (IOP) in glaucoma causes retinal ganglion cell (RGC) loss and damage to the optic nerve. Although IOP is controlled pharmacologically, no treatment is available to restore retinal and optic nerve function. In this paper, we aimed to develop a novel gene therapy for glaucoma using an AAV2-based thioredoxin 2 (Trx2)-exoenzyme C3 transferase (C3) fusion protein expression vector (scAAV2-Trx2-C3). We evaluated the therapeutic effects of this vector in vitro and in vivo using dexamethasone (DEX)-induced glaucoma models. We found that scAAV2-Trx2-C3-treated HeLa cells had significantly reduced GTP-bound active RhoA and increased phosphor-cofilin Ser3 protein expression levels. scAAV2-Trx2-C3 was also shown to inhibit oxidative stress, fibronectin expression, and alpha-SMA expression in DEX-treated HeLa cells. NeuN immunostaining and TUNEL assay in mouse retinal tissues was performed to evaluate its neuroprotective effect upon RGCs, whereas changes in mouse IOP were monitored via rebound tonometer. The present study showed that scAAV2-Trx2-C3 can protect RGCs from degeneration and reduce IOP in a DEX-induced mouse model of glaucoma, while immunohistochemistry revealed that the expression of fibronectin and alpha-SMA was decreased after the transduction of scAAV2-Trx2-C3 in murine eye tissues. Our results suggest that AAV2-Trx2-C3 modulates the outflow resistance of the trabecular meshwork, protects retinal and other ocular tissues from oxidative damage, and may lead to the development of a gene therapeutic for glaucoma.


Subject(s)
Glaucoma , Intraocular Pressure , Humans , Mice , Animals , Retinal Ganglion Cells/metabolism , Fibronectins/metabolism , Thioredoxins/metabolism , HeLa Cells , Transferases/metabolism , Glaucoma/genetics , Glaucoma/therapy , Glaucoma/metabolism , Disease Models, Animal
8.
Genome Res ; 29(6): 978-987, 2019 06.
Article in English | MEDLINE | ID: mdl-31123082

ABSTRACT

DNA and histone proteins define the structure and composition of chromatin. Histone posttranslational modifications (PTMs) are covalent chemical groups capable of modeling chromatin accessibility, mostly due to their ability in recruiting enzymes responsible for DNA readout and remodeling. Mass spectrometry (MS)-based proteomics is the methodology of choice for large-scale identification and quantification of protein PTMs, including histones. High sensitivity proteomics requires online MS coupling with relatively low throughput and poorly robust nano-liquid chromatography (nanoLC) and, for histone proteins, a 2-d sample preparation that includes histone purification, derivatization, and digestion. We present a new protocol that achieves quantitative data on about 200 histone PTMs from tissue or cell lines in 7 h from start to finish. This protocol includes 4 h of histone extraction, 3 h of derivatization and digestion, and only 1 min of MS analysis via direct injection (DI-MS). We demonstrate that this sample preparation can be parallelized for 384 samples by using multichannel pipettes and 96-well plates. We also engineered the sequence of a synthetic "histone-like" peptide to spike into the sample, of which derivatization and digestion benchmarks the quality of the sample preparation. We ensure that DI-MS does not introduce biases in histone peptide ionization as compared to nanoLC-MS/MS by producing and analyzing a library of synthetically modified histone peptides mixed in equal molarity. Finally, we introduce EpiProfileLite for comprehensive analysis of this new data type. Altogether, our workflow is suitable for high-throughput screening of >1000 samples per day using a single mass spectrometer.


Subject(s)
Histone Code , Histones/metabolism , Mass Spectrometry , Protein Processing, Post-Translational , Amino Acid Sequence , Mass Spectrometry/methods , Mass Spectrometry/standards , Peptides/chemical synthesis , Peptides/metabolism , Proteomics/methods , Quality Control , Reproducibility of Results , Workflow
9.
Korean J Parasitol ; 60(6): 423-427, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36588420

ABSTRACT

The long-tailed goral, Naemorhedus caudatus (Mammalia: Bovidae), is one of the endangered animals in the Republic of Korea (Korea). Sarcoptic mange mites infested in diverse species of mammals, including humans, but no case has been reported in long-tailed gorals. We report 2 cases of mange mite, Sarcoptes scabiei, infestation in long-tailed gorals. Mange mites were sampled in the skin legions of the 2 long-tailed gorals, which were rescued in 2 different regions, Uljin-gun, Gyeongsangbuk-do and Cheorwon-gun, Gangwon-do, Korea. Our results showed that the ectoparasite was the itch mite that burrowed into skin and caused scabies on the morphological inspection and placed within the phylogenetic relations of the species. The present study confirmed for the first time in Korea that mange mites are pathogenic scabies of long-tailed goral. Closer surveillance of this pathogenic ectoparasite in zoonotic and infectious ecosystems is warranted.


Subject(s)
Sarcoptes scabiei , Scabies , Animals , Humans , Scabies/diagnosis , Scabies/veterinary , Scabies/epidemiology , Ecosystem , Phylogeny , Caudate Nucleus , Republic of Korea , Ruminants
10.
Proc Natl Acad Sci U S A ; 115(40): 10022-10027, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224458

ABSTRACT

All cells obtain 2'-deoxyribonucleotides for DNA synthesis through the activity of a ribonucleotide reductase (RNR). The class I RNRs found in humans and pathogenic bacteria differ in (i) use of Fe(II), Mn(II), or both for activation of the dinuclear-metallocofactor subunit, ß; (ii) reaction of the reduced dimetal center with dioxygen or superoxide for this activation; (iii) requirement (or lack thereof) for a flavoprotein activase, NrdI, to provide the superoxide from O2; and (iv) use of either a stable tyrosyl radical or a high-valent dimetal cluster to initiate each turnover by oxidizing a cysteine residue in the α subunit to a radical (Cys•). The use of manganese by bacterial class I, subclass b-d RNRs, which contrasts with the exclusive use of iron by the eukaryotic Ia enzymes, appears to be a countermeasure of certain pathogens against iron deprivation imposed by their hosts. Here, we report a metal-free type of class I RNR (subclass e) from two human pathogens. The Cys• in its α subunit is generated by a stable, tyrosine-derived dihydroxyphenylalanine radical (DOPA•) in ß. The three-electron oxidation producing DOPA• occurs in Escherichia coli only if the ß is coexpressed with the NrdI activase encoded adjacently in the pathogen genome. The independence of this new RNR from transition metals, or the requirement for a single metal ion only transiently for activation, may afford the pathogens an even more potent countermeasure against transition metal-directed innate immunity.


Subject(s)
Dihydroxyphenylalanine/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Free Radicals/chemistry , Ribonucleotide Reductases/chemistry , Tyrosine/chemistry , Dihydroxyphenylalanine/metabolism , Escherichia coli Proteins/metabolism , Free Radicals/metabolism , Ribonucleotide Reductases/metabolism , Tyrosine/metabolism
11.
J Proteome Res ; 18(4): 1893-1901, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30781952

ABSTRACT

The standard approach for proteomic data acquisition of isobaric-tagged samples by mass spectrometry is data-dependent acquisition. This semistochastic, identification-first paradigm generates a wealth of peptide-level data without regard to relative abundance. We introduce a data acquisition concept called sequential windowed acquisition of reporter masses (SWARM). This approach performs quantitation first, thereby allowing subsequent acquisition decisions to be predicated on user-defined patterns of reporter ion intensities. The efficacy of this approach is validated through experiments with both synthetic mixtures of Escherichia coli ribosomes spiked into human cell lysates at known ratios and the quantitative evaluation of the human proteome's response to the inhibition of cullin-based protein ubiquitination via the small molecule MLN4924. We find that SWARM-informed parallel reaction monitoring acquisitions display effective acquisition biasing toward analytes displaying quantitative characteristics of interest, resulting in an improvement in the detection of differentially abundant analytes. The SWARM concept provides a flexible platform for the further development of new acquisition methods.


Subject(s)
Proteome , Proteomics/methods , Tandem Mass Spectrometry , Bacterial Proteins/analysis , Bacterial Proteins/chemistry , Escherichia coli/chemistry , HEK293 Cells , Humans , Peptides/analysis , Peptides/chemistry , Proteome/analysis , Proteome/chemistry
12.
J Proteome Res ; 18(10): 3586-3596, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31498634

ABSTRACT

The enrichment of biotinylated proteins using immobilized streptavidin has become a staple methodology for affinity purification-based proteomics. Many of these workflows rely upon tryptic digestion to elute streptavidin-captured moieties from the beads. The concurrent release of high amounts of streptavidin-derived peptides into the digested sample, however, can significantly hamper the effectiveness of downstream proteomic analyses by increasing the complexity and dynamic range of the mixture. Here, we describe a strategy for the chemical derivatization of streptavidin that renders it largely resistant to proteolysis by trypsin and thereby dramatically reduces the amount of streptavidin contamination in the sample. This rapid and robust approach improves the effectiveness of mass spectrometry-based characterization of streptavidin-purified samples making it broadly useful for a wide variety of applications. In addition, we show that this chemical protection strategy can also be applied to other affinity matrices including immobilized antibodies against HA epitopes.


Subject(s)
Proteolysis , Streptavidin/chemistry , Trypsin/metabolism , Chromatography, Affinity/methods , Mass Spectrometry/methods , Proteomics/methods
13.
Ann Neurol ; 84(5): 766-780, 2018 11.
Article in English | MEDLINE | ID: mdl-30295347

ABSTRACT

OBJECTIVE: Several small case series identified KCTD7 mutations in patients with a rare autosomal recessive disorder designated progressive myoclonic epilepsy (EPM3) and neuronal ceroid lipofuscinosis (CLN14). Despite the name KCTD (potassium channel tetramerization domain), KCTD protein family members lack predicted channel domains. We sought to translate insight gained from yeast studies to uncover disease mechanisms associated with deficiencies in KCTD7 of unknown function. METHODS: Novel KCTD7 variants in new and published patients were assessed for disease causality using genetic analyses, cell-based functional assays of patient fibroblasts and knockout yeast, and electron microscopy of patient samples. RESULTS: Patients with KCTD7 mutations can exhibit movement disorders or developmental regression before seizure onset, and are distinguished from similar disorders by an earlier age of onset. Although most published KCTD7 patient variants were excluded from a genome sequence database of normal human variations, most newly identified patient variants are present in this database, potentially challenging disease causality. However, genetic analysis and impaired biochemical interactions with cullin 3 support a causal role for patient KCTD7 variants, suggesting deleterious alleles of KCTD7 and other rare disease variants may be underestimated. Both patient-derived fibroblasts and yeast lacking Whi2 with sequence similarity to KCTD7 have impaired autophagy consistent with brain pathology. INTERPRETATION: Biallelic KCTD7 mutations define a neurodegenerative disorder with lipofuscin and lipid droplet accumulation but without defining features of neuronal ceroid lipofuscinosis or lysosomal storage disorders. KCTD7 deficiency appears to cause an underlying autophagy-lysosome defect conserved in yeast, thereby assigning a biological role for KCTD7. Ann Neurol 2018;84:774-788.


Subject(s)
Autophagy/genetics , Lysosomes/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Potassium Channels/deficiency , Age of Onset , Child, Preschool , Female , Humans , Infant , Lysosomes/pathology , Male , Mutation , Pedigree , Potassium Channels/genetics , Saccharomyces cerevisiae Proteins/genetics
14.
J Biol Chem ; 292(29): 12025-12040, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28533431

ABSTRACT

Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment.


Subject(s)
Copper/metabolism , Cystine/metabolism , Models, Molecular , Molecular Chaperones/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae Proteins/metabolism , Superoxide Dismutase/metabolism , Amino Acid Substitution , Apoenzymes/chemistry , Apoenzymes/genetics , Apoenzymes/metabolism , Binding Sites , Crystallography, X-Ray , Cysteine/metabolism , Enzyme Activation , Enzyme Stability , Humans , Ligands , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Mutagenesis, Site-Directed , Mutation , Oxidation-Reduction , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics
15.
Arch Virol ; 163(3): 649-657, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29204739

ABSTRACT

In Korea, H5-subtype highly pathogenic avian influenza (HPAI) has caused huge economic losses in poultry farms through outbreaks of H5N1 since 2003, H5N8 since 2013 and H5N6 since 2016. Although it was reported that long-distance migratory birds may play a major role in the global spread of avian influenza viruses (AIVs), transmission from such birds to poultry has not been confirmed. Intermediate hosts in the wild also may be a potential factor in viral transmission. Therefore, a total of 367 serum samples from wild animals were collected near major migratory bird habitats from 2011 to 2016 and tested by AIV-specific blocking ELISA and hemagglutination inhibition (HI) test. Two mammalian and eight avian species were seropositive according to the ELISA test. Among these, two mammalian (Hydropotes inermis and Prionailurus bengalensis) and three avian (Aegypius monachus, Cygnus cygnus, and Bubo bubo) species showed high HI titres (> 1,280) against one or two H5-subtype AIVs. As H. inermis (water deer), P. bengalensis (leopard cat), and B. bubo (Eurasian eagle owl) are indigenous animals in Korea, evidence of H5-subtype AIV in these animals implies that continuous monitoring of indigenous animals should be followed to understand interspecies transmission ecology of H5-subtype influenza viruses.


Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza in Birds/epidemiology , Orthomyxoviridae Infections/epidemiology , Animals , Animals, Wild/virology , Birds/virology , Deer/virology , Epidemiological Monitoring , Felidae/virology , Hemagglutination Inhibition Tests , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N2 Subtype/classification , Influenza A Virus, H5N2 Subtype/immunology , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/immunology , Influenza in Birds/blood , Influenza in Birds/immunology , Influenza in Birds/virology , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Phylogeny , Republic of Korea/epidemiology
16.
Int J Hyperthermia ; 34(3): 276-283, 2018 05.
Article in English | MEDLINE | ID: mdl-28659004

ABSTRACT

PURPOSE: Mild temperature hyperthermia (MTH) increases blood flow and oxygenation in tumours. On the other hand, high-dose-per-fraction irradiation damages blood vessels, decreases blood flow and increases hypoxia in tumours. The radiation-induced hypoxia in tumours activates hypoxia-inducible factor-1α (HIF-1α) and its target genes, such as vascular endothelial growth factor (VEGF), promoting revascularization and recurrence. In the present study, we examined the hypothesis that MTH inhibits radiation-induced upregulation of HIF-1α and its target genes by increasing tumour oxygenation. MATERIALS AND METHODS: FSaII fibrosarcoma tumours grown subcutaneously in the legs of C3H mice were used. Tumours were irradiated with 15 Gy using a 60Co irradiator or heated at 41 °C for 30 min using an Oncothermia heating unit. Blood perfusion and hypoxia in tumours were assessed with Hoechst 33342 and pimonidazole staining, respectively. Expression levels of HIF-1α and VEGF were determined using immunohistochemical techniques. Apoptosis of tumour cells was quantitated via TUNEL staining and the effects of treatments on tumour growth rate were assessed by measuring tumour diameters. RESULTS: Irradiation of FSaII tumours with a single dose of 15 Gy led to significantly decreased blood perfusion, increased hypoxia and upregulation of HIF-1α and VEGF. On the other hand, MTH at 41 °C for 30 min increased blood perfusion and tumour oxygenation, thereby suppressing radiation-induced HIF-1α and VEGF in tumours, leading to enhanced apoptosis of tumour cells and tumour growth delay. CONCLUSION: MTH enhances the anti-tumour effect of high-dose irradiation, at least partly by inhibiting radiation-induced upregulation of HIF-1α.


Subject(s)
Hyperthermia, Induced/methods , Hypoxia-Inducible Factor 1, alpha Subunit/therapeutic use , Neoplasms/radiotherapy , Animals , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/pharmacology , Mice
17.
Korean J Parasitol ; 55(2): 207-212, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28506045

ABSTRACT

Infections of Toxoplasma gondii and Babesia microti are reported in many wild animals worldwide, but information on their incidence and molecular detection in Korean wild fields is limited. In this study, the prevalence of T. gondii and B. microti infection in blood samples of 5 animal species (37 Chinese water deer, 23 raccoon dogs, 6 roe deer, 1 wild boar, and 3 Eurasian badgers) was examined during 2008-2009 in Gangwon-do (Province), the Republic of Korea (=Korea) by using serological and molecular tests. The overall seropositivity of T. gondii was 8.6% (6/70); 10.8% in Chinese water deer, 4.3% in raccoon dogs, and 16.7% in roe deer. PCR revealed only 1 case of T. gondii infection in Chinese water deer, and phylogenic analysis showed that the positive isolate was practically identical to the highly pathogenetic strain type I. In B. microti PCR, the positive rate was 5.7% (4/70), including 2 Chinese water deer and 2 Eurasian badgers. Phylogenetic analysis results of 18S rRNA and the ß-tubulin gene showed that all positive isolates were US-type B. microti. To our knowledge, this is the first report of B. microti detected in Chinese water deer and Eurasian badger from Korea. These results indicate a potentially high prevalence of T. gondii and B. microti in wild animals of Gangwon-do, Korea. Furthermore, Chinese water deer might act as a reservoir for parasite infections of domestic animals.


Subject(s)
Animals, Wild/blood , Animals, Wild/parasitology , Babesia microti/isolation & purification , Toxoplasma/isolation & purification , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Animals , Antibodies, Protozoan/blood , Babesia microti/genetics , Babesia microti/immunology , Babesia microti/pathogenicity , Disease Reservoirs/parasitology , Disease Reservoirs/veterinary , Phylogeny , Polymerase Chain Reaction , Prevalence , RNA, Ribosomal, 18S/genetics , Republic of Korea/epidemiology , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasma/pathogenicity , Tubulin/genetics
18.
bioRxiv ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39386529

ABSTRACT

Tau is a microtubule-associated protein that plays an important role in modulating axonal microtubules in neurons. Intracellular tau aggregates are found in a broad class of disorders, including Alzheimer's disease, termed tauopathies. Tau is an intrinsically disordered protein, and its structural disorder appears to be critical to its microtubule-related functions. Tubulin binding sites are found in tau's proline-rich region (PRR), microtubule binding repeats (MTBR: R1-R4), and pseudo-repeat, R'. While many post-translational modifications have been identified on tau, phosphorylation sites, which both regulate tubulin dimer and microtubule interactions and are correlated with disease, cluster with high frequency within the PRR. Here, we use fluorescence correlation spectroscopy and structural mass spectrometry techniques to characterize the impact of phosphomimic mutations in the PRR on tubulin dimer binding and probe the structure of the PRR-tubulin dimer complex. We find that phosphomimics cumulatively diminish tubulin dimer binding and slow microtubule polymerization. Additionally, we map two ∼15 residue regions of the PRR as primary tubulin dimer binding sites and propose a model in which PRR enhances lateral interactions between tubulin dimers, complementing the longitudinal interactions observed for MTBR. Together these measurements provide insight into the previously overlooked relevance of tau's PRR in functional interactions with tubulin.

19.
PLoS One ; 19(7): e0305466, 2024.
Article in English | MEDLINE | ID: mdl-38990973

ABSTRACT

In previous animal model studies, we demonstrated the potential of rAAV2-sVEGFRv-1, which encodes a truncated variant of the alternatively spliced soluble version of VEGF receptor-1 (VEGFR1), as a human gene therapy for age-related macular degeneration (AMD) and diabetic retinopathy (DR). Here, we elucidate in vitro some of the mechanisms by which rAAV2-sVEGFRv-1 exerts its therapeutic effects. Human umbilical vein endothelial cells (HUVECs) were infected with rAAV2-sVEGFRv-1 or a control virus vector in the presence of members of the VEGF family to identify potential binding partners via ELISA, which showed that VEGF-A, VEGF-B, and placental growth factor (PlGF) are all ligands of its transgene product. In order to determine the effects of rAAV2-sVEGFRv-1 on cell proliferation and permeability, processes that are important to the progression AMD and DR, HUVECs were infected with the therapeutic virus vector under the stimulation of VEGF-A, the major driver of the neovascularization that characterizes the forms of these conditions most associated with vision loss. rAAV2-sVEGFRv-1 treatment, as a result, markedly reduced the extent to which these processes occurred, with the latter determined by measuring zonula occludens 1 expression. Finally, the human microglial HMC3 cell line was used to show the effects of the therapeutic virus vector upon inflammatory processes, another major contributor to angiogenic eye disease pathophysiology, with rAAV2-sVEGFRv-1 reducing therein the secretion of pro-inflammatory cytokines interleukin (IL)-1ß and IL-6. Combined with our previously published in vivo data, the in vitro activity of the expressed transgene here further demonstrates the great promise of rAAV2-sVEGFRv-1 as a potential human gene therapeutic for addressing angiogenic ocular conditions.


Subject(s)
Dependovirus , Genetic Therapy , Human Umbilical Vein Endothelial Cells , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-1 , Humans , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Dependovirus/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Cell Proliferation , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/metabolism , Diabetic Retinopathy/therapy , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Vascular Endothelial Growth Factor B/genetics , Vascular Endothelial Growth Factor B/metabolism , Placenta Growth Factor/genetics , Placenta Growth Factor/metabolism
20.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005267

ABSTRACT

The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), regulates RNA Polymerase II (Pol II)-dependent transcription. cMED recruits Pol II and promotes pre-initiation complex (PIC) formation in a manner inhibited by the CKM, which is also implicated in post-initiation control of gene expression. Herein we report cryo-electron microscopy structures of the human complete Mediator and its CKM, which explains the basis for CKM inhibition of cMED-activated transcription. The CKM binds to cMED through an intrinsically disordered region (IDR) in MED13 and HEAT repeats in MED12. The CKM inhibits transcription by allocating its MED13 IDR to occlude binding of Pol II and MED26 to cMED and further obstructing cMED-PIC assembly through steric hindrance with TFIIH and the +1 nucleosome. Notably, MED12 binds to the cMED Hook, positioning CDK8 downstream of the transcription start site, which sheds new light on its stimulatory function in post-initiation events.

SELECTION OF CITATIONS
SEARCH DETAIL