Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Phys Chem Chem Phys ; 26(17): 13152-13163, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629633

ABSTRACT

The current work describes a facile synthesis of spinel-type ZnCo2O4 along with an additional phase, Co3O4, by simply maintaining a non-stoichiometric ratio of Zn and Co precursors. Pure ZnCo2O4 and Co3O4 were also synthesized using the same method to compare results. The obtained morphologies of samples show that small-sized nanoparticles are interconnected and form a porous nanosheet-like structure. When used as anode materials for Li-ion batteries, the ZnCo2O4/Co3O4 nanocomposite electrode exhibits a highly stable charge capacity of 1146.2 mA h g-1 at 0.5C after 350 cycles, which is superior to those of other two pure electrodes, which can be attributed to its optimum porosity, synergistic effect of ZnCo2O4 and Co3O4, increased active sites for Li+ ion diffusion, and higher electrical conductivity. Although the pure Co3O4 electrode displayed a much higher rate capability than the ZnCo2O4/Co3O4 nanocomposite electrode at all investigated current rates, the Co3O4 morphology apparently could not withstand long-term cycling, and the electrode became pulverized due to the repeated volume expansion/contraction, resulting in a rapid decrease in the capacity.

2.
Langmuir ; 39(1): 45-52, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36535725

ABSTRACT

Herein, we report the effect of using nanoparticles of LiFePO4 on the electrochemical properties of all-solid-state batteries (ASSBs) with a solid electrolyte. LiFePO4 (LFP) cathode materials are promising cathode materials in polymer-based composite solid electrolytes because of their limited electrochemical window range. However, LFP cathodes exhibit poor electric conductivity and sluggish lithium ion diffusion. In addition, there is a disadvantage in that the interfacial resistance increases due to poor contact between the LFP cathode material and the solid electrolyte when composing the composite cathode. The nano-sized LFP cathode material increases the contact area between solid electrolyte in the positive electrode and enhances lithium ion diffusion. Therefore, the structural differences and electrochemical performance of these nanoscale LFP cathode materials in the ASSB were studied by X-ray diffraction, scanning electron microscopy, and electrochemical analysis.

3.
Phys Chem Chem Phys ; 25(31): 21082-21088, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37526932

ABSTRACT

Recently, aqueous zinc ion batteries (AZIBs) have attracted significant attention owing to their high safety, low cost, and abundant raw materials. However, finding an affordable and stable cathode, which can reversibly store a substantial amount of Zn2+ ions without damaging the original crystal structure, is still a major challenge for the practical application of ZIBs. It has already been demonstrated that δ-MnO2 is a promising cathode for AZIBs owing to its layered structure and superior electrochemical performance; however, the reported results are still unsatisfactory (especially cyclability). Thus, using an oil bath method, we have fabricated a δ-MnO2 cathode that exhibits a unique mixed phase morphology of mostly spherical nanoparticles and a few nanorods. It is believed that some of the nanoparticles are agglomerated to form nanorods, which may eventually help to offer numerous active sites for Zn2+ diffusion, enhancing the electrolyte osmosis and the contact area between the electrode and electrolyte. The obtained cathode delivers a high reversible capacity of ∼204 mA h g-1 for the 100th cycle and ∼75 mA h g-1 over 1000 cycles at a high current density of 3000 mA g-1 with stable long-range cycling. Ex situ results indicate the mechanism of formation of ZnMn2O4 during discharge, followed by the evolution of the layered δ-MnO2 during charge.

4.
Molecules ; 27(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557797

ABSTRACT

Recently, a novel electrochemical regulation associated with a deposition/dissolution reaction on an electrode surface has been proven to show superiority in large-scale energy storage systems (ESSs). Hence, in the search for high-performance electrodes showcasing these novel regulations, we utilized a low-cost ZnO microsphere electrode to construct aqueous rechargeable batteries (ARBs) that supplied a harvestable and storable charge through electrochemical deposition/dissolution via a reversible manganese oxidation reaction (MOR)/manganese reduction reaction (MRR), respectively, induced by the inherent formation/dissolution of zinc basic sulfate in a mild aqueous electrolyte solution containing 2 M ZnSO4 and 0.2 M MnSO4.

5.
Nano Lett ; 18(4): 2402-2410, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29570307

ABSTRACT

Owing to their safety and low cost, aqueous rechargeable Zn-ion batteries (ARZIBs) are currently more feasible for grid-scale applications, as compared to their alkali counterparts such as lithium- and sodium-ion batteries (LIBs and SIBs), for both aqueous and nonaqueous systems. However, the materials used in ARZIBs have a poor rate capability and inadequate cycle lifespan, serving as a major handicap for long-term storage applications. Here, we report vanadium-based Na2V6O16·3H2O nanorods employed as a positive electrode for ARZIBs, which display superior electrochemical Zn storage properties. A reversible Zn2+-ion (de)intercalation reaction describing the storage mechanism is revealed using the in situ synchrotron X-ray diffraction technique. This cathode material delivers a very high rate capability and high capacity retention of more than 80% over 1000 cycles, at a current rate of 40C (1C = 361 mA g-1). The battery offers a specific energy of 90 W h kg-1 at a specific power of 15.8 KW kg-1, enlightening the material advantages for an eco-friendly atmosphere.

6.
Chemistry ; 22(6): 2039-2045, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26749376

ABSTRACT

A nanostructured Mn3 O4 /C electrode was prepared by a one-step polyol-assisted pyro-synthesis without any post-heat treatments. The as-prepared Mn3 O4 /C revealed nanostructured morphology comprised of secondary aggregates formed from carbon-coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N2 adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn3 O4 /C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g-1 at a current density of 33 mA g-1 , good capacity retentions (1141 mAh g-1 with 100 % Coulombic efficiencies at the 100th cycle), and rate capabilities (307 and 202 mAh g-1 at 528 and 1056 mA g-1 , respectively) when tested as an anode for lithium-ion battery applications.

7.
J Nanosci Nanotechnol ; 15(8): 6053-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26369197

ABSTRACT

Carbon-coated nano-sized LiMnPO4/C particles are synthesized by polyol method using low-cost glucose as the carbon source. The X-ray diffraction patterns of the synthesized samples are well indexed to the orthorhombic olivine-LiMnPO4 structure. The morphology studies using FE-SEM and HR-TEM images clearly illustrate thin layered carbon coatings on LiMnPO4 particles of sizes ranging between 50~100 nm. The LiMnPO4/C particles delivers an initial discharge capacity of 151 mA h g-1 at a current density of 1.6 mA g-1 in the voltage range of 2.5-4.3 V with impressive capacity retentions.


Subject(s)
Electric Power Supplies , Glucose/chemistry , Lithium Compounds/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Polymers/chemical synthesis , Electric Conductivity , Energy Transfer , Equipment Design , Equipment Failure Analysis , Materials Testing , Microelectrodes , Particle Size , Surface Properties
8.
Nanomicro Lett ; 16(1): 83, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214803

ABSTRACT

Composite solid electrolytes (CSEs) have emerged as promising candidates for safe and high-energy-density solid-state lithium metal batteries (SSLMBs). However, concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs. To overcome these challenges, we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li6.4La3Zr1.4Ta0.6O12 (LLZT) to produce the CSE. The synergy of the continuous conductive LLZT network, well-organized polymer, and their interface can enhance the ionic conductivity of the CSE at room temperature. Furthermore, the in-situ polymerization process can also construct the integration and compatibility of the solid electrolyte-solid electrode interface. The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm-1, a significant lithium transference number of 0.627, and exhibited electrochemical stability up to 5.06 V vs. Li/Li+ at 30 °C. Moreover, the Li|CSE|LiNi0.8Co0.1Mn0.1O2 cell delivered a discharge capacity of 105.1 mAh g-1 after 400 cycles at 0.5 C and 30 °C, corresponding to a capacity retention of 61%. This methodology could be extended to a variety of ceramic, polymer electrolytes, or battery systems, thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy-density SSLMBs.

9.
ACS Appl Mater Interfaces ; 16(5): 5896-5904, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38266753

ABSTRACT

Cationic alteration related to a sodium super ion conductor (NASICON)-structured Na3V2(PO4)3 (NVP) is an effective strategy for formulating high-energy and stable cathodes for sodium-ion batteries (SIBs). In this study, we altered the structure of NVP with dual cations, namely, Cr and Fe, to develop Na3V1.5Cr0.4Fe0.1(PO4)3 cathodes for SIBs with high-rate capability (∼71 mAh g-1 at 100 C) and an extreme cycle life output (∼75 mAh g-1 with 95% capacity retention for 10,000 cycles). These excellent electrochemical properties can be ascribed to the synergistic effects of Cr and Fe in the NVP structure, as verified experimentally and theoretically. Therefore, the proposed cosubstitution method can enhance the performance of SIBs by improving their structural stability, electronic conductivity, and phase-change behavior.

10.
Small Methods ; 8(1): e2301158, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37821419

ABSTRACT

Alloying-type metallic tin is perceived as a potential anode material for K-ion batteries owing to its high theoretical capacity and reasonable working potential. However, pure Sn still face intractable issues of inferior K+ storage capability owing to the mechanical degradation of electrode against large volume changes and formation of intermediary insulating phases K4 Sn9 and KSn during alloying reaction. Herein, the TiC/C-carbon nanotubes (CNTs) is prepared as an effective buffer matrix and composited with Sn particles (Sn-TiC/C-CNTs) through the high-energy ball-milling method. Owing to the conductive and rigid properties, the TiC/C-CNTs matrix enhances the electrical conductivity as well as mechanical integrity of Sn in the composite material and thus ultimately contributes to performance supremacy in terms of electrochemical K+ storage properties. During potassiation process, the TiC/C-CNTs matrix not only dissipates the internal stress toward random radial orientations within the Sn particle but also provides electrical pathways for the intermediate insulating phases; this tends to reduce microcracking and prevent considerable electrode degradation.

11.
Adv Sci (Weinh) ; 10(21): e2207744, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37199696

ABSTRACT

Solid-state batteries (SSBs) are ideal candidates for next-generation high-energy-density batteries in the Battery of Things era. Unfortunately, SSB application is limited by their poor ionic conductivity and electrode-electrolyte interfacial compatibility. Herein, in situ composite solid electrolytes (CSEs) are fabricated by infusing vinyl ethylene carbonate monomer into a 3D ceramic framework to address these challenges. The unique and integrated structure of CSEs generates inorganic, polymer, and continuous inorganic-polymer interphase pathways that accelerate ion transportation, as revealed by solid-state nuclear magnetic resonance (SSNMR) analysis. In addition, the mechanism and activation energy of Li+ transportation are studied and visualized by performing density functional theory calculations. Furthermore, the monomer solution can penetrate and polymerize in situ to form an excellent ionic conductor network inside the cathode structure. This concept is successfully applied to both solid-state lithium and sodium batteries. The Li|CSE|LiNi0.8 Co0.1 Mn0.1 O2 cell fabricated herein delivers a specific discharge capacity of 118.8 mAh g-1 after 230 cycles at 0.5 C and 30 °C. Meanwhile, the Na|CSE|Na3 Mg0.05 V1.95 (PO4 )3 @C cell fabricated herein maintains its cycling stability over 3000 cycles at 2 C and 30 °C with zero-fading. The proposed integrated strategy provides a new perspective for designing fast ionic conductor electrolytes to boost high-energy solid-state batteries.

12.
ACS Nano ; 17(14): 14032-14042, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37428961

ABSTRACT

Lithium-sulfur (Li-S) batteries using Li2S and Li-free anodes have emerged as a potential high-energy and safe battery technology. Although the operation of Li-S full batteries based on Li2S has been demonstrated at room temperature, their effective use at a subzero temperature has not been realized due to the low electrochemical utilization of Li2S. Here, ammonium nitrate (NH4NO3) is introduced as a functional additive that allows Li-S full batteries to operate at -10 °C. The polar N-H bonds in the additive alter the activation pathway of Li2S by inducing the dissolution of the Li2S surface. Then, Li2S with an amorphized surface layer undergoes the modified activation process, which consists of the disproportionation and direct conversion reaction, through which Li2S is efficiently converted into S8. The Li-S full battery using NH4NO3 delivers a reversible capacity and cycling stability over 400 cycles at -10 °C.

13.
Adv Sci (Weinh) ; 10(16): e2301201, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37068194

ABSTRACT

Batteries using potassium metal (K-metal) anode are considered a new type of low-cost and high-energy storage device. However, the thermodynamic instability of the K-metal anode in organic electrolyte solutions causes uncontrolled dendritic growth and parasitic reactions, leading to rapid capacity loss and low Coulombic efficiency of K-metal batteries. Herein, an advanced electrolyte comprising 1 M potassium bis(fluorosulfonyl)imide (KFSI) + 0.05 M potassium hexafluorophosphate (KPF6 ) dissolved in dimethoxyethane (DME) is introduced as a simple and effective strategy of regulated solvation chemistry, showing an enhanced interfacial stability of the K-metal anode. Incorporating 0.05 M KPF6 into the 1 M KFSI in DME electrolyte solution decreases the number of solvent molecules surrounding the K ion and simultaneously leads to facile K+ de-solvation. During the electrodeposition process, these unique features can lower the exchange current density between the electrolyte and K-metal anode, thereby improving the uniformity of K electrodeposition, as well as potentially suppressing dendritic growth. Even under a high current density of 4 mA cm-2 , the K-metal anode in 0.05 M KPF6 -containing electrolyte ensures high areal capacity and an unprecedented lifespan with stable Coulombic efficiency in both symmetrical half-cells and full-cells employing a sulfurized polyacrylonitrile cathode.

14.
Nanotechnology ; 23(43): 435703, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23059839

ABSTRACT

This study suggests combustion synthesized Ce(1-x)Zr(x)O(2) (CZO; x = 0.1-0.5) as a new catalyst for the cathode in non-aqueous electrolyte based Li/O(2) cells. The spherical catalysts have a fluorite structure with a mean diameter of 5-17 nm. Zr doping into the ceria lattice leads to the reduction of Ce(4+) to Ce(3+), which further improves the catalyst performance. Electrochemical studies of CZO as a cathode catalyst in the Li/O(2) cell show that CZO follows a two-electron pathway for oxygen reduction. A maximum discharge capacity of 1620 mAh g(-1) is obtained for the Ce(0.8)Zr(0.2)O(2) catalyst due to its high surface area and porosity. A composite of CZO and MnO(2) shows even better performance as a cathode catalyst for the Li/O(2) cell.

15.
Phys Chem Chem Phys ; 14(8): 2934-9, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22274568

ABSTRACT

An electronically conducting 3D network of reduced graphene oxide (RGO) was introduced into LiNi(1/3)Mn(1/3)Co(1/3)O(2) (LNMC) cathode material in a special nano/micro hierarchical structure. The rate test and cycling measurement showed that the hierarchical networks remarkably improve the high rate performance of LNMC electrode for lithium-ion batteries. The effect of RGO conducting networks on kinetic property was investigated by electrochemical impedance spectroscopy (EIS) and potentiostatic intermittent titration (PITT). The EIS results reveal that the RGO network greatly decreases the resistance of lithium batteries, especially the charge transfer resistance which can be attributed to the significantly improved conducting networks. The enhancement of apparent diffusion coefficient by the RGO conducting networks is shown by PITT. The power performance was found to be limited by the electrical conduction in the two-phase region, which can be greatly facilitated by the hierarchical RGO network together with carbon black. The as-obtained LNMC/RGO cathode exhibits an outstanding electrochemical property supporting the design idea of electronically conducting 3D networks for the high-energy and high-power lithium-ion batteries.

16.
Dalton Trans ; 51(31): 11797-11805, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35861496

ABSTRACT

In this study, V5+ doped sodium titanate nanorods were successfully synthesized by a sol-gel method with different optimized vanadium concentrations. Before testing as a promising anode material for sodium ion battery (SIB) application, the samples were systematically characterized. It was clearly observed that V5+ doping significantly affects the phase formation of sodium titanate samples and leads to the alteration of the major phase of Na2Ti3O7 to a single Na2Ti6O13 phase with increasing doping concentrations. Electrochemical investigations clearly showed that the optimized 15 wt% V5+ doped sample exhibits the highest capacity of 136 mA h g-1 at 100 mA g-1 after 900 cycles as well as better rate capability than the undoped sample by delivering 101 mA h g-1 capacity at a high current density of 1000 mA g-1. It is believed that the incorporation of highly charged V5+ in sodium titanate produces oxygen vacancies along with partial reduction of Ti4+ to Ti3+, resulting in improved electronic conductivity. The utilization of oxygen vacancies also preserves the integrity of the electrode, giving rise to long term cycling. Thereby, V5+ doping was found to be an effective strategy to enhance the electrochemical performance of the sodium titanate anode for SIBs.

17.
RSC Adv ; 12(22): 14209-14222, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35558853

ABSTRACT

In this article, we report the effect of a Li6.75La3Zr2Al0.25O12 (LLZAO) composite Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode material on the performance of all-solid-state batteries (ASSBs) with oxide-based organic/inorganic hybrid solid electrolytes. The layered structure of Ni-rich cathode material Li(Ni x Co(1-x)/2Mn(1-x)/2)O2 (x > 0.6) (NCM) exhibiting a high specific capacity is among the suitable cathode materials for next-generation energy storage systems, particularly electric vehicles and portable devices for all-solid-state batteries. However, the ASSBs present a problem-the resistance at the interface between a cathode and solid electrolyte is larger than that with a liquid electrolyte because of point contact. To solve this problem, using a simultaneous co-precipitation method, we composited various amounts of LLZAO material and an ion conducting material on the cathode material's surface. Therefore, to optimize the value of the LLZAO material in the composite cathode material, the structure, cycling stability, and rate performance of the NCM-LLZAO composite cathode material in ASSBs with oxide-based inorganic/organic-hybrid electrolytes were investigated using powder X-ray diffraction analysis, field-emission scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic measurements.

18.
J Nanosci Nanotechnol ; 11(8): 7294-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22103180

ABSTRACT

Li4Ti5O12 (LTO) nanoparticles were successfully synthesized by solvothermal technique using cost-effective precursors in polyol medium and post-annealed at temperatures of 400, 500, and 600 degrees C. The XRD patterns of the samples were clearly indexed to the spinel shaped Li4Ti5O12 (space group, Fd-3 m). The particle size and morphology of samples were identified using field-emission SEM. The electrochemical performance of solvothermal samples revealed fairly high initial discharge/charge specific capacities in the range 230-235 and 170-190 mAh/g, at 1 C-rate, while that registered for the solid-state sample has been 160 and 150 mAh/g, respectively. Furthermore, among these samples, LTO annealed at 500 degrees C exhibited highly improved rate performances at C-rates as high as 30 and 60 C. This was attributed to the achievement of small particle sizes with high crystallinity in nano-scale dimensions and hence shorter diffusion paths combined with larger contact area at the electrode/electrolyte interface.

19.
J Nanosci Nanotechnol ; 11(2): 1451-4, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21456210

ABSTRACT

Olivine structured LiFePO4 samples were synthesized by solvothermal process using various polyol media of ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), and tetraethylene glycol (TTEG) without any heating as a post procedure. The X-ray diffraction patterns of the samples prepared in EG and DEG showed the crystalline peaks with well-fitted to the positions on the basis of an olivine type structure without any impurities. In order to determine the unit cell parameters, synchrotron powder XRD patterns were fitted with whole-pattern profile matching method using FULLPROF program. The obtained samples exhibited well dispersed nanoplate morphologies excepting for the sample prepared in EG. The samples prepared in EG, DEG, TEG, and TTEG showed the reversible capacity of 118, 167, 90, and 105 mAh/g at current density of 0.1 mA/cm2, respectively. Among them, the samples reacted in DEG and TTEG showed good performances at high rate of 16C with high capacities retention.

20.
Chem Sci ; 12(22): 7623-7655, 2021 May 11.
Article in English | MEDLINE | ID: mdl-34168818

ABSTRACT

The growing demand for green energy has fueled the exploration of sustainable and eco-friendly energy storage systems. To date, the primary focus has been solely on the enhancement of lithium-ion battery (LIB) technologies. Recently, the increasing demand and uneven distribution of lithium resources have prompted extensive attention toward the development of other advanced battery systems. As a promising alternative to LIBs, potassium-ion batteries (KIBs) have attracted considerable interest over the past years owing to their resource abundance, low cost, and high working voltage. Capitalizing on the significant research and technological advancements of LIBs, KIBs have undergone rapid development, especially the anode component, and diverse synthesis techniques, potassiation chemistry, and energy storage applications have been systematically investigated and proposed. In this review, the necessity of exploring superior anode materials is highlighted, and representative KIB anodes as well as various structural construction approaches are summarized. Furthermore, critical issues, challenges, and perspectives of KIB anodes are meticulously organized and presented. With a strengthened understanding of the associated potassiation chemistry, the composition and microstructural modification of KIB anodes could be significantly improved.

SELECTION OF CITATIONS
SEARCH DETAIL