Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
Add more filters

Publication year range
1.
Nature ; 625(7994): 264-269, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093009

ABSTRACT

Spin nematic is a magnetic analogue of classical liquid crystals, a fourth state of matter exhibiting characteristics of both liquid and solid1,2. Particularly intriguing is a valence-bond spin nematic3-5, in which spins are quantum entangled to form a multipolar order without breaking time-reversal symmetry, but its unambiguous experimental realization remains elusive. Here we establish a spin nematic phase in the square-lattice iridate Sr2IrO4, which approximately realizes a pseudospin one-half Heisenberg antiferromagnet in the strong spin-orbit coupling limit6-9. Upon cooling, the transition into the spin nematic phase at TC ≈ 263 K is marked by a divergence in the static spin quadrupole susceptibility extracted from our Raman spectra and concomitant emergence of a collective mode associated with the spontaneous breaking of rotational symmetries. The quadrupolar order persists in the antiferromagnetic phase below TN ≈ 230 K and becomes directly observable through its interference with the antiferromagnetic order in resonant X-ray diffraction, which allows us to uniquely determine its spatial structure. Further, we find using resonant inelastic X-ray scattering a complete breakdown of coherent magnon excitations at short-wavelength scales, suggesting a many-body quantum entanglement in the antiferromagnetic state10,11. Taken together, our results reveal a quantum order underlying the Néel antiferromagnet that is widely believed to be intimately connected to the mechanism of high-temperature superconductivity12,13.

2.
Prostate ; 84(9): 814-822, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558458

ABSTRACT

BACKGROUND: Tumor initiation and progression necessitate a metabolic shift in cancer cells. Consequently, the progression of prostate cancer (PCa), a leading cause of cancer-related deaths in males globally, involves a shift from lipogenic to glycolytic metabolism. Androgen deprivation therapy (ADT) serves as the standard treatment for advanced-stage PCa. However, despite initial patient responses, castrate resistance emerges ultimately, necessitating novel therapeutic approaches. Therefore, in this study, we aimed to investigate the role of monocarboxylate transporters (MCTs) in PCa post-ADT and evaluate their potential as therapeutic targets. METHODS: PCa cells (LNCaP and C4-2 cell line), which has high prostate-specific membrane antigen (PSMA) and androgen receptor (AR) expression among PCa cell lines, was used in this study. We assessed the expression of MCT1 in PCa cells subjected to ADT using charcoal-stripped bovine serum (CSS)-containing medium or enzalutamide (ENZ). Furthermore, we evaluated the synergistic anticancer effects of combined treatment with ENZ and SR13800, an MCT1 inhibitor. RESULTS: Short-term ADT led to a significant upregulation in folate hydrolase 1 (FOLH1) and solute carrier family 16 member 1 (SLC16A1) gene levels, with elevated PSMA and MCT1 protein levels. Long-term ADT induced notable changes in cell morphology with further upregulation of FOLH1/PSMA and SLC16A1/MCT1 levels. Treatment with ENZ, a nonsteroidal anti-androgen, also increased PSMA and MCT1 expression. However, combined therapy with ENZ and SR13800 led to reduced PSMA level, decreased cell viability, and suppressed expression of cancer stem cell markers and migration indicators. Additionally, analysis of human PCa tissues revealed a positive correlation between PSMA and MCT1 expression in tumor regions. CONCLUSIONS: Our results demonstrate that ADT led to a significant upregulation in MCT1 levels. However, the combination of ENZ and SR13800 demonstrated a promising synergistic anticancer effect, highlighting a potential therapeutic significance for patients with PCa undergoing ADT.


Subject(s)
Androgen Antagonists , Benzamides , Monocarboxylic Acid Transporters , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Symporters , Male , Humans , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/genetics , Cell Line, Tumor , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Nitriles/pharmacology , Symporters/metabolism , Symporters/antagonists & inhibitors , Symporters/genetics , Benzamides/pharmacology
3.
Nat Mater ; 22(2): 186-193, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36329264

ABSTRACT

In the kagome metals AV3Sb5 (A = K, Rb, Cs), three-dimensional charge order is the primary instability that sets the stage for other collective orders to emerge, including unidirectional stripe order, orbital flux order, electronic nematicity and superconductivity. Here, we use high-resolution angle-resolved photoemission spectroscopy to determine the microscopic structure of three-dimensional charge order in AV3Sb5 and its interplay with superconductivity. Our approach is based on identifying an unusual splitting of kagome bands induced by three-dimensional charge order, which provides a sensitive way to refine the spatial charge patterns in neighbouring kagome planes. We found a marked dependence of the three-dimensional charge order structure on composition and doping. The observed difference between CsV3Sb5 and the other compounds potentially underpins the double-dome superconductivity in CsV3(Sb,Sn)5 and the suppression of Tc in KV3Sb5 and RbV3Sb5. Our results provide fresh insights into the rich phase diagram of AV3Sb5.

4.
Cytotherapy ; 26(1): 51-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37843481

ABSTRACT

BACKGROUND AIMS: To investigate whether the extracellular vesicles (EVs) from mesenchymal stem cell-like cells derived from induced pluripotent stem cells (iMSC-EVs) can inhibit the progression of acute kidney injury (AKI). METHODS: The characteristics of iMSC-EVs were confirmed by immunoblotting, cryo-transmission electron microscopy, nanoparticle tracking analysis, and their localization in kidneys. Using human renal epithelial cells, the potential of iMSC-EVs to stimulate the growth and survival of HK-2 cells undergoing cisplatin-induced cell death was investigated. The anti-inflammatory effects of iMSC-EVs was examined in M1-polarized THP-1 macrophages. Subsequently, the therapeutic potential of iMSC-EVs was assessed in cisplatin-induced acute kidney injury in BALB/c mice. The anti-apoptotic and anti-inflammatory effect of iMSC-EVs was evaluated using serum biochemistry, histology, immunohistochemistry, and gene expression analysis. RESULTS: iMSC-EVs promoted the growth of renal epithelial cell (HK-2) and enhanced the survival of HK-2 undergoing cisplatin-induced cell death. In cisplatin-induced mice with AKI, iMSC-EVs alleviated AKI, as shown by reduced blood nitrogen urea/creatinine and increased body weight. Also, iMSC-EVs enhanced renal tissue integrity and the number of proliferating cell nuclear antigen-positive tubules. iMSC-EVs decreased the infiltration of immune cells, reduced the expression of inflammatory genes in M1-induced THP-1 cells and enhanced capillary density in the kidney of AKI mice. Real-time quantitative polymerase chain reaction analysis showed that the expression of inflammatory genes in the kidney of AKI mice was reduced compared with that received vehicle. Immunoblotting revealed that iMSC-EVs led to a decreased protein expression of key inflammatory genes. Also, iMSC-EVs reversed the activation of ERK1/2 signaling induced by AKI. Finally, iMSC-EVs inhibited the apoptosis of HK-2 cells induced by cisplatin as well as that of renal tissue of AKI mice. CONCLUSIONS: Our data suggest that iMSC-EVs have potential to become a novel, cell-free therapeutic for cisplatin-induced AKI.


Subject(s)
Acute Kidney Injury , Extracellular Vesicles , Induced Pluripotent Stem Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mice , Animals , Cisplatin/adverse effects , Induced Pluripotent Stem Cells/metabolism , Extracellular Vesicles/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/therapy , Acute Kidney Injury/pathology , Anti-Inflammatory Agents/metabolism
5.
Mol Pharm ; 21(7): 3330-3342, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38875185

ABSTRACT

The aberrant assembly of amyloid-ß (Aß) is implicated in Alzheimer's disease (AD). Recent clinical outcomes of Aß-targeted immunotherapy reinforce the notion that clearing Aß burden is a potential therapeutic approach for AD. Herein, to develop drug candidates for chemically driven clearance of Aß aggregates, we synthesized 51 novel polyfunctionalized furo[2,3-b:4,5-b']dipyridine-chalcone hybrid compounds. After conducting two types of cell-free anti-Aß functional assays, Aß aggregation prevention and Aß aggregate clearance, we selected YIAD-0336, (E)-8-((1H-pyrrol-2-yl)methylene)-10-(4-chlorophenyl)-2,4-dimethyl-7,8-dihydropyrido[3',2':4,5]furo[3,2-b]quinolin-9(6H)-one, for further in vivo investigations. As YIAD-0336 exhibited a low blood-brain barrier penetration profile, it was injected along with aggregated Aß directly into the intracerebroventricular region of ICR mice and ameliorated spatial memory in Y-maze tests. Next, YIAD-0336 was orally administered to 5XFAD transgenic mice with intravenous injections of mannitol, and YIAD-0336 significantly removed Aß plaques from the brains of 5XFAD mice. Collectively, YIAD-0336 dissociated toxic aggregates in the mouse brain and hence alleviated cognitive deterioration. Our findings indicate that chemically driven clearance of Aß aggregates is a promising therapeutic approach for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Mice , Amyloid beta-Peptides/metabolism , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/analogs & derivatives , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/administration & dosage , Male , Brain/drug effects , Brain/metabolism , Humans , Memory/drug effects , Protein Aggregates/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Maze Learning/drug effects , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/administration & dosage
6.
J Nanobiotechnology ; 22(1): 149, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570846

ABSTRACT

BACKGROUND: Myocardial infarction (MI), a representative form of ischemic heart disease, remains a huge burden worldwide. This study aimed to explore whether extracellular vesicles (EVs) secreted from hyaluronic acid (HA)-primed induced mesenchymal stem cells (HA-iMSC-EVs) could enhance the cardiac repair after MI. RESULTS: HA-iMSC-EVs showed typical characteristics for EVs such as morphology, size, and marker proteins expression. Compared with iMSC-EVs, HA-iMSC-EVs showed enhanced tube formation and survival against oxidative stress in endothelial cells, while reduced reactive oxygen species (ROS) generation in cardiomyocytes. In THP-1 macrophages, both types of EVs markedly reduced the expression of pro-inflammatory signaling players, whereas HA-iMSC-EVs were more potent in augmenting anti-inflammatory markers. A significant decrease of inflammasome proteins was observed in HA-iMSC-EV-treated THP-1. Further, phospho-SMAD2 as well as fibrosis markers in TGF-ß1-stimulated cardiomyocytes were reduced in HA-iMSC-EVs treatment. Proteomic data showed that HA-iMSC-EVs were enriched with multiple pathways including immunity, extracellular matrix organization, angiogenesis, and cell cycle. The localization of HA-iMSC-EVs in myocardium was confirmed after delivery by either intravenous or intramyocardial route, with the latter increased intensity. Echocardiography revealed that intramyocardial HA-iMSC-EVs injections improved cardiac function and reduced adverse cardiac remodeling and necrotic size in MI heart. Histologically, MI hearts receiving HA-iMSC-EVs had increased capillary density and viable myocardium, while showed reduced fibrosis. CONCLUSIONS: Our results suggest that HA-iMSC-EVs improve cardiac function by augmenting vessel growth, while reducing ROS generation, inflammation, and fibrosis in MI heart.


Subject(s)
Mesenchymal Stem Cells , Myocardial Infarction , Humans , Hyaluronic Acid/pharmacology , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism , Proteomics , Myocardial Infarction/therapy , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Mesenchymal Stem Cells/metabolism , Fibrosis
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33795513

ABSTRACT

Plants sense and integrate diverse stimuli to determine the timing for germination. A smoke compound, 3,4,5-trimethylfuran-2(5H)-one (trimethylbutenolide, TMB), has been identified to inhibit the seed germination of higher plants. To understand the mode of action, we examined various physiological and molecular aspects of the TMB-dependent inhibition of seed germination in Arabidopsis thaliana The results indicated that the effect of TMB is due to the enhanced physiological dormancy, which is modulated by other dormancy regulatory cues such as after-ripening, stratification, and ABA/GA signaling. In addition, gene expression profiling showed that TMB caused genome-wide transcriptional changes, altering the expression of a series of dormancy-related genes. Based on the TMB-responsive physiological contexts in Arabidopsis, we performed mutant screening to isolate genetic components that underpin the TMB-induced seed dormancy. As a result, the TMB-RESISTANT1 (TES1) gene in Arabidopsis, encoding a B2 group Raf-like kinase, was identified. Phenotypic analysis of the tes1 mutant implicated that TES1 has a critical role in the TMB-responsive gene expression and the inhibition of seed germination. Taken together, we propose that plants have been equipped with a TMB sensory pathway through which the TMB induces the seed dormancy in a TES1-dependent way.


Subject(s)
Furans/pharmacology , Plant Dormancy , Seeds/metabolism , Arabidopsis , Drug Resistance , Germination , Seeds/drug effects , Smoke
8.
Molecules ; 29(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398536

ABSTRACT

We theoretically investigated the nitrogen substitution effect on the molecular structure and π-electron delocalization in linear nitrogen-substituted polycyclic aromatic hydrocarbons (N-PAHs). Based on the optimized molecular structures and magnetic field-induced parameters of fused bi- and tricyclic linear N-PAHs, we found that the local π-electron delocalization of subcycles (e.g., mono- and bicyclic constituent moieties) in linear N-PAHs is preserved, despite deviation from ideal structures of parent monocycles. The introduction of a fused five-membered ring with a pyrrolic N atom (N-5MR) in linear N-PAHs significantly perturbs the π-electronic condition of the neighboring fused six-membered ring (6MR). Monocyclic pyrrole exhibits substantial bond length alternations, strongly influencing the π-electronic systems of both the fused N-5MR and 6MR in linear N-PAHs, depending on the location of shared covalent bonds. A fused six-membered ring with a graphitic N atom in an indolizine moiety cannot generate monocyclic π-electron delocalization but instead contributes to the formation of polycyclic π-electron delocalization. This is evidenced by bifurcated diatropic ring currents induced by an external magnetic field. In conclusion, the satisfaction of Hückel's 4n + 2 rule for both mono- and polycycles is crucial for understanding the overall π-electron delocalization. It is crucial to consider the unique characteristics of the three types of substituted N atoms and the spatial arrangement of 5MR and 6MR in N-PAHs.

9.
J Am Chem Soc ; 145(36): 19508-19512, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37651703

ABSTRACT

Photocathodic conversion of NAD+ to NADH cofactor is a promising platform for activating redox biological catalysts and enzymatic synthesis using renewable solar energy. However, many photocathodes suffer from low photovoltage, consequently requiring a high cathodic bias for NADH production. Here, we report an n+p-type silicon nanowire (n+p-SiNW) photocathode having a photovoltage of 435 mV to drive energy-efficient NADH production. The enhanced band bending at the n+/p interface accounts for the high photovoltage, which conduces to a benchmark onset potential [0.393 V vs the reversible hydrogen electrode (VRHE)] for SiNW-based photocathodic NADH generation. In addition, the n+p-SiNW nanomaterial exhibits a Faradaic efficiency of 84.7% and a conversion rate of 1.63 µmol h-1 cm-1 at 0.2 VRHE, which is the lowest cathodic potential to achieve the maximum productivity among SiNW-sensitized cofactor production.


Subject(s)
Nanostructures , Nanowires , NAD , Silicon , Benchmarking
10.
J Am Chem Soc ; 145(6): 3401-3407, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36541445

ABSTRACT

While atomically monodisperse nanostructured materials are highly desirable to unravel the size- and structure-catalysis relationships, their controlled synthesis and the atomic-level structure determination pose challenges. Particularly, copper-containing atomically precise alloy nanoclusters are potential catalyst candidates for the electrochemical CO2 reduction reaction (eCO2RR) due to high abundance and tunable catalytic activity of copper. Herein, we report the synthesis and total structure of an alkynyl-protected 21-atom AgCu alloy nanocluster [Ag15Cu6(C≡CR)18(DPPE)2]-, denoted as Ag15Cu6 (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene; DPPE: 1,2-bis(diphenylphosphino)ethane). The single-crystal X-ray diffraction reveals that Ag15Cu6 consists of an Ag11Cu4 metal core exhibiting a body-centered cubic (bcc) structure, which is capped by 2 Cu atoms, 2 Ag2DPPE motifs, and 18 alkynyl ligands. Interestingly, the Ag15Cu6 cluster exhibits excellent catalytic activity for eCO2RR with a CO faradaic efficiency (FECO) of 91.3% at -0.81 V (vs the reversible hydrogen electrode, RHE), which is much higher than that (FECO: 48.5% at -0.89 V vs RHE) of Ag9Cu6 with bcc structure. Furthermore, Ag15Cu6 shows superior stability with no significant decay in the current density and FECO during a long-term operation of 145 h. Density functional theory calculations reveal that the de-ligated Ag15Cu6 cluster can expose more space at the pair of AgCu dual metals as the efficient active sites for CO formation.

11.
J Am Chem Soc ; 145(42): 23068-23075, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37807716

ABSTRACT

Cations in an electrolyte modulate microenvironments near the catalyst surface and affect product distribution from an electrochemical CO2 reduction reaction, and thus, their interaction with intermediate states has been tried to be probed. Herein, we directly observed the cation effect on *CO intermediates on the Cu(OH)2-derived catalyst in real time through operando surface-enhanced Raman spectroscopy at high overpotentials (-1.0 VRHE). Atop *CO peaks are composed of low-frequency binding *CO (*COLFB) and high-frequency binding *CO (*COHFB) because of their adsorption sites. These two *CO intermediates are found to have different sensitivities to the cation-induced field, and each *CO is proposed to be suitably stabilized for efficient C-C coupling. The proportions between *COHFB and *COLFB are dependent on the type of alkali cations, and the increases in the *COHFB ratio have a high correlation with selective C2H4 production under K+ and Cs+, indicating that *COHFB is the dominant and fast active species. In addition, as the hydrated cation size decreases, *COLFB is more sensitively red-shifted than *COHFB, which promotes C-C coupling and suppresses C1 products. Through time-resolved operando measurements, dynamic changes between the two *CO species are observed, showing the rapid initial adsorption of *COHFB and subsequently reaching a steady ratio between *COLFB and *COHFB.

12.
Chembiochem ; 24(19): e202300328, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37497809

ABSTRACT

Alzheimer's disease (AD) is the most prevalent cause of dementia and has become a health concern worldwide urging for an effective therapeutic. The amyloid hypothesis, currently the most pursued basis of AD drug discovery, points the cause of AD to abnormal production and ineffective removal of pathogenic aggregated amyloid-ß (Aß). AD therapeutic research has been focused on targeting different species of Aß in the amyloidogenic process to control Aß content and recover cognitive decline. Among the different processes targeted, the clearance mechanism has been found to be the most effective, supported by the recent clinical approval of an Aß-targeting immunotherapeutic drug which significantly slowed cognitive decline. Although the current AD drug discovery field is extensively researching immunotherapeutic drugs, there are numerous properties of immunotherapy in need of improvements that could be overcome by an equally performing chemical drug. Here, we review chemical and immunotherapy drug candidates, based on their mechanism of modulating the amyloid cascade, selected from the AlzForum database. Through this review, we aim to summarize and evaluate the prospect of Aß-targeting chemical drugs.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Immunotherapy/methods , Drug Discovery , Databases, Factual
13.
J Synchrotron Radiat ; 30(Pt 3): 643-649, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36947164

ABSTRACT

An endstation for resonant inelastic X-ray scattering (RIXS), dedicated to operations in the hard X-ray regime, has been constructed at the 1C beamline of Pohang Light Source II. At the Ir L3-edge, a total energy resolution of 34.2 meV was achieved, close to the theoretical estimation of 34.0 meV, which considers factors such as the incident energy bandpass, intrinsic analyzer resolution, geometrical broadening of the spectrometer, finite beam-size effect and Johann aberration. The performance of the RIXS instrument is demonstrated by measuring the RIXS spectra of Sr2IrO4. The endstation can be easily reconfigured to measure energy-integrated intensities with very low background for diffuse scattering and diffraction experiments.

14.
J Transl Med ; 21(1): 914, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38102606

ABSTRACT

BACKGROUND: Magnetic resonance fingerprinting (MRF) enables fast myelin quantification via the myelin water fraction (MWF), offering a noninvasive method to assess brain development and disease. However, MRF-derived MWF lacks histological evaluation and remains unexamined in relation to leukodystrophy. This study aimed to access MRF-derived MWF through histology in mice and establish links between myelin, development, and leukodystrophy in mice and children, demonstrating its potential applicability in animal and human studies. METHODS: 3D MRF was performed on normal C57BL/6 mice with different ages, megalencephalic leukoencephalopathy with subcortical cyst 1 wild type (MLC1 WT, control) mice, and MLC 1 knock-out (MLC1 KO, leukodystrophy) mice using a 3 T MRI. MWF values were analyzed from 3D MRF data, and histological myelin quantification was carried out using immunohistochemistry to anti-proteolipid protein (PLP) in the corpus callosum and cortex. The associations between 'MWF and PLP' and 'MWF and age' were evaluated in C57BL/6 mice. MWF values were compared between MLC1 WT and MLC1 KO mice. MWF of normal developing children were retrospectively collected and the association between MWF and age was assessed. RESULTS: In 35 C57BL/6 mice (age range; 3 weeks-48 weeks), MWF showed positive relations with PLP immunoreactivity in the corpus callosum (ß = 0.0006, P = 0.04) and cortex (ß = 0.0005, P = 0.006). In 12-week-old C57BL/6 mice MWF showed positive relations with PLP immunoreactivity (ß = 0.0009, P = 0.003, R2 = 0.54). MWF in the corpus callosum (ß = 0.0022, P < 0.001) and cortex (ß = 0.0010, P < 0.001) showed positive relations with age. Seven MLC1 WT and 9 MLC1 KO mice showed different MWF values in the corpus callous (P < 0.001) and cortex (P < 0.001). A total of 81 children (median age, 126 months; range, 0-199 months) were evaluated and their MWF values according to age showed the best fit for the third-order regression model (adjusted R2 range, 0.44-0.94, P < 0.001). CONCLUSION: MWF demonstrated associations with histologic myelin quantity, age, and the presence of leukodystrophy, underscoring the potential of 3D MRF-derived MWF as a rapid and noninvasive quantitative indicator of brain myelin content in both mice and humans.


Subject(s)
Myelin Sheath , Neurodegenerative Diseases , Child , Humans , Mice , Animals , Myelin Sheath/pathology , Water/metabolism , Retrospective Studies , Mice, Inbred C57BL , Magnetic Resonance Imaging/methods , Brain/metabolism
15.
J Nutr ; 153(3): 691-702, 2023 03.
Article in English | MEDLINE | ID: mdl-36931749

ABSTRACT

BACKGROUND: Adipocyte dysregulation of lipid droplet (LD) metabolism caused by altered expression of LD proteins contributes to obesity-related metabolic diseases. OBJECTIVES: We aimed to investigate whether expression levels of PLIN1, CIDEA, and CIDEC were altered in adipose tissues of women with obesity and type 2 diabetes and whether their alterations were associated with metabolic risk factors. METHODS: Normal-weight (NW; 18.5 kg/m2 < BMI ≤ 25 kg/m2; n = 43), nondiabetic obese (OB; BMI > 30 kg/m2; n = 38), and diabetic obese (OB/DM; BMI > 30 kg/m2, fasting glucose ≥ 126 mg/dL, HbA1c ≥ 6.5%; n = 22) women were recruited. Metabolic parameters were measured, and expressions of PLIN1, CIDEA, CIDEC, and obesity-related genes were quantified in abdominal subcutaneous (SAT) and visceral adipose tissues (VAT). Effects of proinflammatory cytokines, endoplasmic reticulum (ER) stress inducers, and metabolic improvement agents on LD protein gene expressions were investigated in human adipocytes. RESULTS: PLIN1, CIDEA, and CIDEC expressions were lower in SAT and higher in VAT in OB subjects relative to NW subjects; however, they were suppressed in both fat depots in OB/DM subjects relative to OB (P < 0.05). Across the entire cohort, whereas VAT PLIN1 (r = 0.349) and CIDEC expressions (r = 0.282) were positively associated with BMI (P < 0.05), SAT PLIN1 (r = -0.390) and CIDEA expressions (r = -0.565) were inversely associated. After adjustment for BMI, some or all of the adipose LD protein gene expressions were negatively associated with fasting glucose (r = -0.259 or higher) and triglyceride levels (r = -0.284 or higher) and positively associated with UCP1 expression (r = 0.353 or higher) (P < 0.05). In adipocytes, LD protein gene expressions were 55-70% downregulated by increased proinflammatory cytokines and ER stress but 2-4-fold upregulated by the metabolic improvement agents exendin-4 and dapagliflozin (P < 0.05). CONCLUSIONS: The findings suggest that reduction of adipose LD protein expression is involved in the pathogenesis of metabolic disorders in women with obesity and type 2 diabetes and that increasing LD protein expression in adipocytes could control development of metabolic disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Female , Adult , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Lipid Droplets/metabolism , Lipid Droplets/pathology , Obesity/metabolism , Risk Factors , Cytokines/metabolism , Glucose/metabolism , Lipid Droplet Associated Proteins/metabolism , Intra-Abdominal Fat/metabolism
16.
PLoS Comput Biol ; 18(7): e1009834, 2022 07.
Article in English | MEDLINE | ID: mdl-35816517

ABSTRACT

The recent novel coronavirus disease (COVID-19) outbreak, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening global health. However, an understanding of the interaction of SARS-CoV-2 with human cells, including the physical docking property influenced by the host's genetic diversity, is still lacking. Here, based on germline variants in the UK Biobank covering 502,543 individuals, we revealed the molecular interactions between human angiotensin-converting enzyme 2 (hACE2), which is the representative receptor for SARS-CoV-2 entry, and COVID-19 infection. We identified six nonsense and missense variants of hACE2 from 2585 subjects in the UK Biobank covering 500000 individuals. Using our molecular dynamics simulations, three hACE2 variants from 2585 individuals we selected showed higher levels of binding free energy for docking in the range of 1.44-3.69 kcal/mol. Although there are diverse contributors to SARS-CoV-2 infections, including the mobility of individuals, we analyzed the diagnosis records of individuals with these three variants of hACE2. Our molecular dynamics simulations combined with population-based genomic data provided an atomistic understanding of the interaction between hACE2 and the spike protein of SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , COVID-19/genetics , Humans , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
17.
J Org Chem ; 88(4): 2605-2611, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36723434

ABSTRACT

Concise syntheses of naturally occurring γ-butenolides (+)-xylogiblactones B and C have been achieved for the first time starting from commercial methyl crotonate in 5-8 steps. The synthetic course involves allenoate γ-addition to racemic aldehydes through a kinetic resolution to establish the required stereochemical framework as center and axial chirality and subsequent oxacyclization via gold catalysis to complete the (+)-xylogiblactone skeleton. Both key transformations proceed in a regio- and stereospecific manner. This outcome relies on finding an efficient synthetic method for racemic aldehydes as precursors for the kinetic resolution. Completion of the synthesis provides stereochemical clarification for (+)-xylogiblactones B and C.

18.
Environ Res ; 221: 115309, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36646200

ABSTRACT

To date, radiocesium (137Cs) has been considered stable in the form of pollucite mineralized through high-temperature heat treatment. This study presented a possibility through experimental results that the entire medium exists as amorphous aluminosilicate at a relatively low temperature, but cesium is partially and preferentially converted from a composite adsorbent into pollucite. Cesium lowers the eutectic point within the system and initiates the nucleation of pollucite prior to other elements. We confirmed that the partial mineral phase of cesium showed the same chemical stability as when the entire medium was converted to pollucite. X-ray absorption spectroscopy provided direct evidence for this phenomenon; also, the stability results of radioactive cesium shown through a series of sintering experiments supported the conclusion. This method can be applied as a method to immobilize radioactive cesium under relatively mild temperature conditions of atmospheric pressure, while eliminating the problem of diffusion due to its volatilization.


Subject(s)
Cesium Radioisotopes , Cesium , Cesium/analysis , Cesium/chemistry , Aluminum Silicates
19.
J Korean Med Sci ; 38(23): e195, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37309700

ABSTRACT

BACKGROUND: In Korea, during the early phase of the coronavirus disease 2019 (COVID-19) pandemic, we responded to the uncertainty of treatments under various conditions, consistently playing catch up with the speed of evidence updates. Therefore, there was high demand for national-level evidence-based clinical practice guidelines for clinicians in a timely manner. We developed evidence-based and updated living recommendations for clinicians through a transparent development process and multidisciplinary expert collaboration. METHODS: The National Evidence-based Healthcare Collaborating Agency (NECA) and the Korean Academy of Medical Sciences (KAMS) collaborated to develop trustworthy Korean living guidelines. The NECA-supported methodological sections and 8 professional medical societies of the KAMS worked with clinical experts, and 31 clinicians were involved annually. We developed a total of 35 clinical questions, including medications, respiratory/critical care, pediatric care, emergency care, diagnostic tests, and radiological examinations. RESULTS: An evidence-based search for treatments began in March 2021 and monthly updates were performed. It was expanded to other areas, and the search interval was organized by a steering committee owing to priority changes. Evidence synthesis and recommendation review was performed by researchers, and living recommendations were updated within 3-4 months. CONCLUSION: We provided timely recommendations on living schemes and disseminated them to the public, policymakers and various stakeholders using webpages and social media. Although the output was successful, there were some limitations. The rigor of development issues, urgent timelines for public dissemination, education for new developers, and spread of several new COVID-19 variants have worked as barriers. Therefore, we must prepare systematic processes and funding for future pandemics.


Subject(s)
COVID-19 , Child , Humans , Adenosine-5'-(N-ethylcarboxamide) , Republic of Korea , SARS-CoV-2 , Practice Guidelines as Topic
20.
J Integr Neurosci ; 22(3): 57, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37258435

ABSTRACT

BACKGROUND: The Fazekas scale is one of the most commonly used visual grading systems for white matter hyperintensity (WMH) for brain disorders like dementia from T2-fluid attenuated inversion recovery magnetic resonance (MR) images (T2-FLAIRs). However, the visual grading of the Fazekas scale suffers from low-intra and inter-rater reliability and high labor-intensive work. Therefore, we developed a fully automated visual grading system using quantifiable measurements. METHODS: Our approach involves four stages: (1) the deep learning-based segmentation of ventricles and WMH lesions, (2) the categorization into periventricular white matter hyperintensity (PWMH) and deep white matter hyperintensity (DWMH), (3) the WMH diameter measurement, and (4) automated scoring, following the quantifiable method modified for Fazekas grading. We compared the performances of our method and that of the modified Fazekas scale graded by three neuroradiologists for 404 subjects with T2-FLAIR utilized from a clinical site in Korea. RESULTS: The Krippendorff's alpha across our method and raters (A) versus those only between the radiologists (R) were comparable, showing substantial (0.694 vs. 0.732; 0.658 vs. 0.671) and moderate (0.579 vs. 0.586) level of agreements for the modified Fazekas, the DWMH, and the PWMH scales, respectively. Also, the average of areas under the receiver operating characteristic curve between the radiologists (0.80 ± 0.09) and the radiologists against our approach (0.80 ± 0.03) was comparable. CONCLUSIONS: Our fully automated visual grading system for WMH demonstrated comparable performance to the radiologists, which we believe has the potential to assist the radiologist in clinical findings with unbiased and consistent scoring.


Subject(s)
Brain Diseases , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL