Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 993
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 592(7854): 381-385, 2021 04.
Article in English | MEDLINE | ID: mdl-33820983

ABSTRACT

Metal halide perovskites of the general formula ABX3-where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion-have shown great potential as light harvesters for thin-film photovoltaics1-5. Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI3) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells6-9, and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO-) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance.

2.
Nat Chem Biol ; 20(3): 353-364, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37973890

ABSTRACT

Proteases function as pivotal molecular switches, initiating numerous biological events. Notably, potyviral protease, derived from plant viruses, has emerged as a trusted proteolytic switch in synthetic biological circuits. To harness their capabilities, we have developed a single-component photocleavable switch, termed LAUNCHER (Light-Assisted UNcaging switCH for Endoproteolytic Release), by employing a circularly permutated tobacco etch virus protease and a blue-light-gated substrate, which are connected by fine-tuned intermodular linkers. As a single-component system, LAUNCHER exhibits a superior signal-to-noise ratio compared with multi-component systems, enabling precise and user-controllable release of payloads. This characteristic renders LAUNCHER highly suitable for diverse cellular applications, including transgene expression, tailored subcellular translocation and optochemogenetics. Additionally, the plug-and-play integration of LAUNCHER into existing synthetic circuits facilitates the enhancement of circuit performance. The demonstrated efficacy of LAUNCHER in improving existing circuitry underscores its significant potential for expanding its utilization in various applications.


Subject(s)
Peptide Hydrolases , Potyvirus , Blue Light , Proteolysis , Signal-To-Noise Ratio
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35074912

ABSTRACT

Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Hippocampus/metabolism , Hippocampus/physiopathology , Neural Cell Adhesion Molecules/genetics , Neural Inhibition , Synapses/metabolism , Amyloid beta-Protein Precursor/genetics , CA1 Region, Hippocampal , Carrier Proteins , Dendrites/metabolism , GABAergic Neurons/metabolism , Interneurons , Models, Biological , Neural Cell Adhesion Molecules/chemistry , Neural Cell Adhesion Molecules/metabolism , Neural Inhibition/genetics , Protein Binding , Protein Interaction Domains and Motifs , Pyramidal Cells/metabolism , Receptors, GABA-B/metabolism , Synaptic Transmission
4.
Proc Natl Acad Sci U S A ; 119(30): e2119048119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858411

ABSTRACT

The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.


Subject(s)
Antigens, Neoplasm , Antineoplastic Agents, Immunological , Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/secondary , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chromatography, Liquid , Epithelial-Mesenchymal Transition , Gene Knockdown Techniques , Humans , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Proteomics , Secretome , Tandem Mass Spectrometry , Xenograft Model Antitumor Assays
5.
J Proteome Res ; 23(1): 130-141, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38104258

ABSTRACT

Many attempts have been made to develop new agents that target EGFR mutants or regulate downstream factors in various cancers. Cell-based screening showed that a natural small molecule, Ertredin, inhibited the growth of EGFRvIII mutant cancer cells. Previous studies have shown that Ertredin effectively inhibits anchorage-independent 3D growth of sphere-forming cells transfected with EGFRvIII mutant cDNA. However, the underlying mechanism remains unclear. In this study, we investigated the target protein of Ertredin by combining drug affinity-responsive target stability (DARTS) assays with liquid chromatography-mass spectrometry using label-free Ertredin as a bait and HepG2 cell lysates as a proteome pool. NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 (NDUFA12) was identified as an Ertredin-binding protein that was responsible for its biological activity. The interaction between NDUFA12 and Ertredin was validated by DARTS and cellular thermal shift assays. In addition, the genetic knockdown of the identified target, NDUFA12, was shown to suppress cell proliferation. NDUFA12 was identified as a biologically relevant target protein of Ertredin that is responsible for its antitumor activity, and these results provide insights into the role of NDUFA12 as a downstream factor in EGFRvIII mutants.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Proteomics/methods , Proteins/metabolism , Liver Neoplasms/drug therapy , NADPH Dehydrogenase
6.
J Proteome Res ; 23(3): 905-915, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38293943

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis due to the absence of diagnostic markers and molecular targets. Here, we took an unconventional approach to identify new molecular targets for pancreatic cancer. We chose uncharacterized protein evidence level 1 without function annotation from extensive proteomic research on pancreatic cancer and focused on proline and serine-rich 2 (PROSER2), which ranked high in the cell membrane and cytoplasm. In our study using cell lines and patient-derived orthotopic xenograft cells, PROSER2 exhibited a higher expression in cells derived from primary tumors than in those from metastatic tissues. PROSER2 was localized in the cell membrane and cytosol by immunocytochemistry. PROSER2 overexpression significantly reduced the metastatic ability of cancer cells, whereas its suppression had the opposite effect. Proteomic analysis revealed that PROSER2 interacts with STK25 and PDCD10, and their binding was confirmed by immunoprecipitation and immunocytochemistry. STK25 knockdown enhanced metastasis by decreasing p-AMPK levels, whereas PROSER2-overexpressing cells increased the level of p-AMPK, indicating that PROSER2 suppresses invasion via the AMPK pathway by interacting with STK25. This is the first demonstration of the novel role of PROSER2 in antagonizing tumor progression via the STK25-AMPK pathway in PDAC. LC-MS/MS data are available at MassIVE (MSV000092953) and ProteomeXchange (PXD045646).


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , AMP-Activated Protein Kinases , Chromatography, Liquid , Proteomics , Cell Proliferation , Cell Movement , Tandem Mass Spectrometry , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Disease Models, Animal , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins
7.
Gastroenterology ; 164(7): 1293-1309, 2023 06.
Article in English | MEDLINE | ID: mdl-36898552

ABSTRACT

BACKGROUND & AIMS: Intrahepatic cholangiocarcinomas (iCCs) are characterized by their rarity, difficult diagnosis, and overall poor prognosis. The iCC molecular classification for developing precision medicine strategies was investigated. METHODS: Comprehensive genomic, transcriptomic, proteomic, and phosphoproteomic analyses were performed on treatment-naïve tumor samples from 102 patients with iCC who underwent surgical resection with curative intent. An organoid model was constructed for testing therapeutic potential. RESULTS: Three clinically supported subtypes (stem-like, poorly immunogenic, and metabolism) were identified. NCT-501 (aldehyde dehydrogenase 1 family member A1 [ALDH1A1] inhibitor) exhibited synergism with nanoparticle albumin-bound-paclitaxel in the organoid model for the stem-like subtype. The oncometabolite dysregulations were associated with different clinical outcomes in the stem-like and metabolism subtypes. The poorly immunogenic subtype harbors the non-T-cell tumor infiltration. Integrated multiomics analysis not only reproduced the 3 subtypes but also showed heterogeneity in iCC. CONCLUSIONS: This large-scale proteogenomic analysis provides information beyond that obtained with genomic analysis, allowing the functional impact of genomic alterations to be discerned. These findings may assist in the stratification of patients with iCC and in developing rational therapeutic strategies.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Proteogenomics , Humans , Proteomics , Prognosis , Cholangiocarcinoma/genetics , Cholangiocarcinoma/surgery , Cholangiocarcinoma/metabolism , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/pathology
8.
Small ; 20(16): e2307175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38032159

ABSTRACT

Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells are an attractive choice for a bottom cell of the low-cost and environmental tandem solar cells with perovskite. However, the progress in developing efficient perovskite/CZTSSe tandem solar cells has been hindered by the lack of high performance of the CZTSSe bottom cell. Here, an efficient CZTSSe bottom cell is demonstrated by adopting a facile and effective CsF treatment process. It is found that the CsF treatment not only facilitates grain growth and improves phase homogeneity by suppressing the detrimental deep-level defects and secondary phases, but also induces larger band bending and stronger drift force at the P-N junction. As a result, the carrier extraction/transport can be effectively accelerated, while reducing the interfacial recombination. These combined effects eventually result in a significant performance enhancement from 8.38% to 10.20%. The CsF-treated CZTSSe solar cell is finally applied to the mechanically-stacked perovskite/CZTSSe 4-terminal tandem cell by coupling a semi-transparent perovskite top cell, which exhibits the highest reported tandem efficiency of 23.01%.

9.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Article in English | MEDLINE | ID: mdl-34725484

ABSTRACT

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Subject(s)
Glycopeptides/blood , Glycoproteins/blood , Informatics/methods , Proteome/analysis , Proteomics/methods , Research Personnel/statistics & numerical data , Software , Glycosylation , Humans , Proteome/metabolism , Tandem Mass Spectrometry
10.
Mol Psychiatry ; 28(2): 810-821, 2023 02.
Article in English | MEDLINE | ID: mdl-36253443

ABSTRACT

Autism spectrum disorder (ASD) is a major neurodevelopmental disorder in which patients present with core symptoms of social communication impairment, restricted interest, and repetitive behaviors. Although various studies have been performed to identify ASD-related mechanisms, ASD pathology is still poorly understood. CNTNAP2 genetic variants have been found that represent ASD genetic risk factors, and disruption of Cntnap2 expression has been associated with ASD phenotypes in mice. In this study, we performed an integrative multi-omics analysis by combining quantitative proteometabolomic data obtained with Cntnap2 knockout (KO) mice with multi-omics data obtained from ASD patients and forebrain organoids to elucidate Cntnap2-dependent molecular networks in ASD. To this end, a mass spectrometry-based proteometabolomic analysis of the medial prefrontal cortex in Cntnap2 KO mice led to the identification of Cntnap2-associated molecular features, and these features were assessed in combination with multi-omics data obtained on the prefrontal cortex in ASD patients to identify bona fide ASD cellular processes. Furthermore, a reanalysis of single-cell RNA sequencing data obtained from forebrain organoids derived from patients with CNTNAP2-associated ASD revealed that the aforementioned identified ASD processes were mainly linked to excitatory neurons. On the basis of these data, we constructed Cntnap2-associated ASD network models showing mitochondrial dysfunction, axonal impairment, and synaptic activity. Our results may shed light on the Cntnap2-dependent molecular networks in ASD.


Subject(s)
Autism Spectrum Disorder , Mice , Animals , Multiomics , Mice, Knockout , Neurons/metabolism , Axons/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
11.
Mol Psychiatry ; 28(8): 3548-3562, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37365244

ABSTRACT

ADNP syndrome, involving the ADNP transcription factor of the SWI/SNF chromatin-remodeling complex, is characterized by developmental delay, intellectual disability, and autism spectrum disorders (ASD). Although Adnp-haploinsufficient (Adnp-HT) mice display various phenotypic deficits, whether these mice display abnormal synaptic functions remain poorly understood. Here, we report synaptic plasticity deficits associated with cognitive inflexibility and CaMKIIα hyperactivity in Adnp-HT mice. These mice show impaired and inflexible contextual learning and memory, additional to social deficits, long after the juvenile-stage decrease of ADNP protein levels to ~10% of the newborn level. The adult Adnp-HT hippocampus shows hyperphosphorylated CaMKIIα and its substrates, including SynGAP1, and excessive long-term potentiation that is normalized by CaMKIIα inhibition. Therefore, Adnp haploinsufficiency in mice leads to cognitive inflexibility involving CaMKIIα hyperphosphorylation and excessive LTP in adults long after its marked expressional decrease in juveniles.


Subject(s)
Autistic Disorder , Intellectual Disability , Mice , Animals , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/genetics , Long-Term Potentiation/genetics , Autistic Disorder/metabolism , Cognition , Homeodomain Proteins/metabolism
12.
Nanotechnology ; 35(33)2024 May 30.
Article in English | MEDLINE | ID: mdl-38744265

ABSTRACT

Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.

13.
J Med Internet Res ; 26: e52134, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206673

ABSTRACT

BACKGROUND: Robust and accurate prediction of severity for patients with COVID-19 is crucial for patient triaging decisions. Many proposed models were prone to either high bias risk or low-to-moderate discrimination. Some also suffered from a lack of clinical interpretability and were developed based on early pandemic period data. Hence, there has been a compelling need for advancements in prediction models for better clinical applicability. OBJECTIVE: The primary objective of this study was to develop and validate a machine learning-based Robust and Interpretable Early Triaging Support (RIETS) system that predicts severity progression (involving any of the following events: intensive care unit admission, in-hospital death, mechanical ventilation required, or extracorporeal membrane oxygenation required) within 15 days upon hospitalization based on routinely available clinical and laboratory biomarkers. METHODS: We included data from 5945 hospitalized patients with COVID-19 from 19 hospitals in South Korea collected between January 2020 and August 2022. For model development and external validation, the whole data set was partitioned into 2 independent cohorts by stratified random cluster sampling according to hospital type (general and tertiary care) and geographical location (metropolitan and nonmetropolitan). Machine learning models were trained and internally validated through a cross-validation technique on the development cohort. They were externally validated using a bootstrapped sampling technique on the external validation cohort. The best-performing model was selected primarily based on the area under the receiver operating characteristic curve (AUROC), and its robustness was evaluated using bias risk assessment. For model interpretability, we used Shapley and patient clustering methods. RESULTS: Our final model, RIETS, was developed based on a deep neural network of 11 clinical and laboratory biomarkers that are readily available within the first day of hospitalization. The features predictive of severity included lactate dehydrogenase, age, absolute lymphocyte count, dyspnea, respiratory rate, diabetes mellitus, c-reactive protein, absolute neutrophil count, platelet count, white blood cell count, and saturation of peripheral oxygen. RIETS demonstrated excellent discrimination (AUROC=0.937; 95% CI 0.935-0.938) with high calibration (integrated calibration index=0.041), satisfied all the criteria of low bias risk in a risk assessment tool, and provided detailed interpretations of model parameters and patient clusters. In addition, RIETS showed potential for transportability across variant periods with its sustainable prediction on Omicron cases (AUROC=0.903, 95% CI 0.897-0.910). CONCLUSIONS: RIETS was developed and validated to assist early triaging by promptly predicting the severity of hospitalized patients with COVID-19. Its high performance with low bias risk ensures considerably reliable prediction. The use of a nationwide multicenter cohort in the model development and validation implicates generalizability. The use of routinely collected features may enable wide adaptability. Interpretations of model parameters and patients can promote clinical applicability. Together, we anticipate that RIETS will facilitate the patient triaging workflow and efficient resource allocation when incorporated into a routine clinical practice.


Subject(s)
Algorithms , COVID-19 , Triage , Humans , Biomarkers , COVID-19/diagnosis , Hospital Mortality , Neural Networks, Computer , Triage/methods , Republic of Korea
14.
J Korean Med Sci ; 39(6): e55, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374628

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) vaccination is effective in preventing the disease transmission and progression. However, the relatively mild disease course of the omicron variant and the decrease in antibodies over time after vaccination raise questions about the effectiveness of vaccination, especially in young people. We compared the prevalence of pneumonia and chest X-ray severity score according to vaccination status among patients < 50 years old with COVID-19. METHODS: From January 17 to March 17, 2022, 579 patients with COVID-19, who were < 50 years old and had a known vaccination history in our institution, were all included in this study. All patients underwent initial chest radiography, and follow-up chest radiographs were obtained every two days until discharge. Pneumonia was scored from the radiographs using the Brixia scoring system. The scores of the six lung zones were added for a total score ranging from 0 to 18. Patients were divided into four groups according to 10-year age intervals. Differences between groups were analyzed using the χ² or Fisher's exact tests for categorical variables and the Kruskal-Wallis test or analysis of variance for continuous variables. RESULTS: Among patients aged 12-19 years, the prevalence of pneumonia did not differ depending on vaccination status (non-vaccinated vs. vaccinated, 1/47 [2.1%] vs. 1/18 [5.6%]; P = 0.577). Among patients in their 20s, the prevalence of pneumonia was significantly higher among non-vaccinated patients than among vaccinated patients (8/28, 28.6% vs. 7/138, 5.1%, P < 0.001), similar to patients in their 40s (32/52 [61.5%] vs. 18/138 [13.0%]; P < 0.001). The chest X-ray severity score was also significantly higher in non-vaccinated patients than that in vaccinated patients in their 20s to their 40s (P < 0.001), but not among patients aged 12-19 years (P = 0.678). CONCLUSION: In patients aged 20-49 years, vaccinated patients had a significantly lower prevalence of pneumonia and chest X-ray severity score than non-vaccinated patients.


Subject(s)
COVID-19 , Humans , Adolescent , Middle Aged , COVID-19/epidemiology , SARS-CoV-2 , Prevalence , Retrospective Studies , Radiography , Vaccination
15.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791150

ABSTRACT

Tomatoes contain many secondary metabolites such as ß-carotene, lycopene, phenols, flavonoids, and vitamin C, which are responsible for antioxidant activity. SlSGR1 encodes a STAY-GREEN protein that plays a critical role in the regulation of chlorophyll degradation in tomato leaves and fruits. Therefore, the present study was conducted to evaluate the sgr1 null lines based on their physicochemical characteristics, the content of secondary metabolites, and the γ-Aminobutyric acid (GABA) content. The total soluble solids (TSS), titrated acidity (TA), and brix acid ratio (BAR) of the sgr1 null lines were higher than those of the wild type(WT). Additionally, the sgr1 null lines accumulated higher levels of flavor-inducing ascorbic acid and total carotenoids compared to WT. Also, the total phenolic content, total flavonoids, GABA content, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical content of the sgr1 null lines were higher than those of the WT. Therefore, these studies suggest that the knockout of the SGR1 gene by the CRISPR/Cas9 system can improve various functional compounds in tomato fruit, thereby satisfying the antioxidant properties required by consumers.


Subject(s)
Antioxidants , CRISPR-Cas Systems , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Antioxidants/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Editing/methods , Gene Knockout Techniques , Carotenoids/metabolism , Phenols/metabolism , Ascorbic Acid/metabolism , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Flavonoids/metabolism , gamma-Aminobutyric Acid/metabolism
16.
Korean J Physiol Pharmacol ; 28(2): 113-120, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38414394

ABSTRACT

Solute carrier 40A1 (SLC40A1) encodes ferroportin, which is the only known transmembrane protein that exports elemental iron from mammalian cells and is essential for iron homeostasis. Mutations in SLC40A1 are associated with iron-overload disorders. In addition to ferroportin diseases, SLC40A1 expression is downregulated in various cancer types. Despite the clinical significance of the SLC40A1 transporter, only a few studies have investigated genetic variants in SLC40A1. The present study was performed to identify genetic variations in the SLC40A1 promoter and functionally characterize each variant using in vitro assays. We investigated four haplotypes and five variants in the SLC40A1 promoter. We observed that haplotype 3 (H3) had significantly lower promoter activity than H1, whereas the activity of H4 was significantly higher than that of H1. Luciferase activity of H2 was comparable to that of H1. In addition, four variants of SLC40A1, c.-1355G>C, c.-662C>T, c.-98G>C, and c.-8C>G, showed significantly increased luciferase activity compared to the wild type (WT), whereas c.-750G>A showed significantly decreased luciferase activity compared to the WT. Three transcription factors, cAMP response element-binding protein-1 (CREB-1), chicken ovalbumin upstream promoter transcription factor 1, and hepatic leukemia factor (HLF), were predicted to bind to the promoter regions of SLC40A1 near c.-662C>T, c.-98G>C, and c.-8C>G, respectively. Among these, CREB-1 and HLF bound more strongly to the variant sequences than to the WT and functioned as activators of SLC40A1 transcription. Collectively, our findings indicate that the two SLC40A1 promoter haplotypes affect SLC40A1 transcription, which is regulated by CREB-1 and HLF.

17.
Anal Chem ; 95(6): 3153-3159, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36656793

ABSTRACT

Dopamine (DA) homeostasis influences emotions, neural circuit development, cognition, and the reward system. Dysfunctions in DA regulation can lead to neurological disorders, including depression, developmental disorders, and addiction. DA homeostasis disruption is a primary cause of Parkinson's Disease (PD). Therefore, understanding the relationship between DA homeostasis and PD progression may clarify the mechanisms for pharmacologically treating PD. This study developed a novel in vitro DA homeostasis platform which consists of three main parts: (1) a microfluidic device for culturing DAergic neurons, (2) an optical detection system for reading DA levels, and (3) an automatic closed-loop control system that establishes when and how much medication to infuse; this uses a microfluidic device that can cultivate DAergic neurons, perfuse solutions, perform in vitro PD modeling, and continuously monitor DA concentrations. The automatically controlled closed-loop control system simultaneously monitors pharmacological PD treatment to support long-term monitoring of DA homeostasis. SH-SY5Y neuroblastoma cells were chosen as DAergic neurons. They were cultivated in the microfluidic device, and real-time cellular DA level measurements successfully achieved long-term monitoring and modulation of DA homeostasis. When applied in combination with multiday cell culture, this advanced system can be used for drug screening and fundamental biological studies.


Subject(s)
Neuroblastoma , Parkinson Disease , Humans , Dopamine , Microfluidics , Dopaminergic Neurons , Homeostasis
18.
Small ; : e2307441, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054784

ABSTRACT

The electrode buffer layer is crucial for high-performance and stable OSCs, optimizing charge transport and energy level alignment at the interface between the polymer active layer and electrode. Recently, SnO2 has emerged as a promising material for the cathode buffer layer due to its desirable properties, such as high electron mobility, transparency, and stability. Typically, SnO2 nanoparticle layers require a postannealing treatment above 150°C in an air environment to remove the surfactant ligands and obtain high-quality thin films. However, this poses challenges for flexible electronics as flexible substrates can't tolerate temperatures exceeding 100°C. This study presents solution-processable and annealing-free SnO2 nanoparticles by employing y-ray irradiation to disrupt the bonding between surfactant ligands and SnO2 nanoparticles. The SnO2 layer treated with y-ray irradiation is used as an electron transport layer in OSCs based on PTB7-Th:IEICO-4F. Compared to the conventional SnO2 nanoparticles that required high-temperature annealing, the y-SnO2 nanoparticle-based devices exhibit an 11% comparable efficiency without postannealing at a high temperature. Additionally, y-ray treatment has been observed to eliminate the light-soaking effect of SnO2 . By eliminating the high-temperature postannealing and light-soaking effect, y-SnO2 nanoparticles offer a promising, cost-effective solution for future flexible solar cells fabricated using roll-to-roll mass processing.

19.
Small ; 19(10): e2206547, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36541782

ABSTRACT

Two new Y6 derivatives of symmetrical YBO-2O and asymmetrical YBO-FO nonfullerene acceptors (NFAs) are prepared with a simplified synthetic procedure by incorporating octyl and fluorine substituents onto the terminal 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN) moiety. By moving the alkyl substituents on the Y6 core to the terminal INCN moiety, the lowest unoccupied molecular orbital of the YBO NFAs increases without decreasing solubility, resulting in high open-circuit voltages of the devices. Molecular dynamics simulation shows that YBO-2O/-FO preferentially form core-core and terminal-terminal dimeric interactions, demonstrating their tighter packing structure and higher electron mobility than Y6, which is consistent with 2D grazing incidence X-ray scattering and space charge limited current measurements. In blend films, the hole transfer (HT) from YBO-2O/-FO to the polymer donor PM6 is studied in detail by transient absorption spectroscopy, demonstrating efficient HT from YBO-FO to PM6 with their suitable energy level alignment. Despite the simplified synthesis, YBO-FO demonstrates photovoltaic performance similar to that of Y6, exhibiting a power conversion efficiency of 15.01%. Overall, this design strategy not only simplifies the synthetic procedures but also adjusts the electrical properties by modifying the intermolecular packing and energy level alignment, suggesting a novel simplified molecular design of Y6 derivatives.

20.
Small ; 19(36): e2301161, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37127870

ABSTRACT

Cdx Hg1- x Se/HgS/Cdy Zn1- y S core/multi-shell quantum dots (QDs) exhibiting bright tissue-penetrating shortwave infrared (SWIR; 1000-1700 nm) photoluminescence (PL) are engineered. The new structure consists of a quasi-type-II Cdx Hg1- x Se/HgS core/inner shell domain creating luminescent bandgap tunable across SWIR window and a wide-bandgap Cdy Zn1- y S outer shell boosting the PL quantum yield (QY). This compositional sequence also facilitates uniform and coherent shell growth by minimizing interfacial lattice mismatches, resulting in high QYs in both organic (40-80%) and aqueous (20-70%) solvents with maximum QYs of 87 and 73%, respectively, which are comparable to those of brightest visible-to-near infrared QDs. Moreover, they maintain bright PL in a photocurable resin (QY 40%, peak wavelength ≈ 1300 nm), enabling the fabrication of SWIR-luminescent composites of diverse morphology and concentration. These composites are used to localize controlled amounts of SWIR QDs inside artificial (Intralipid) and porcine tissues and quantitatively evaluate the applicability as luminescent probes for deep-tissue imaging.

SELECTION OF CITATIONS
SEARCH DETAIL