Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Bioengineering (Basel) ; 11(8)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39199801

ABSTRACT

This study aimed to investigate whether plaque characteristics derived from intravascular optical coherence tomography (IVOCT) could predict a long-term cardiovascular (CV) death. This study was a single-center, retrospective study on 104 patients who had undergone IVOCT-guided percutaneous coronary intervention. Plaque characterization was performed using Optical Coherence TOmography PlaqUe and Stent (OCTOPUS) software developed by our group. A total of 31 plaque features, including lesion length, lumen, calcium, fibrous cap (FC), and vulnerable plaque features (e.g., microchannel), were computed from the baseline IVOCT images. The discriminatory power for predicting CV death was determined using univariate/multivariate logistic regressions. Of 104 patients, CV death was identified in 24 patients (23.1%). Univariate logistic regression revealed that lesion length, calcium angle, calcium thickness, FC angle, FC area, and FC surface area were significantly associated with CV death (p < 0.05). In the multivariate logistic analysis, only the FC surface area (OR 2.38, CI 0.98-5.83, p < 0.05) was identified as a significant determinant for CV death, highlighting the importance of the 3D lesion analysis. The AUC of FC surface area for predicting CV death was 0.851 (95% CI 0.800-0.927, p < 0.05). Patients with CV death had distinct plaque characteristics (i.e., large FC surface area) in IVOCT. Studies such as this one might someday lead to recommendations for pharmaceutical and interventional approaches.

2.
Sci Rep ; 14(1): 4393, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388637

ABSTRACT

Thin-cap fibroatheroma (TCFA) is a prominent risk factor for plaque rupture. Intravascular optical coherence tomography (IVOCT) enables identification of fibrous cap (FC), measurement of FC thicknesses, and assessment of plaque vulnerability. We developed a fully-automated deep learning method for FC segmentation. This study included 32,531 images across 227 pullbacks from two registries (TRANSFORM-OCT and UHCMC). Images were semi-automatically labeled using our OCTOPUS with expert editing using established guidelines. We employed preprocessing including guidewire shadow detection, lumen segmentation, pixel-shifting, and Gaussian filtering on raw IVOCT (r,θ) images. Data were augmented in a natural way by changing θ in spiral acquisitions and by changing intensity and noise values. We used a modified SegResNet and comparison networks to segment FCs. We employed transfer learning from our existing much larger, fully-labeled calcification IVOCT dataset to reduce deep-learning training. Postprocessing with a morphological operation enhanced segmentation performance. Overall, our method consistently delivered better FC segmentation results (Dice: 0.837 ± 0.012) than other deep-learning methods. Transfer learning reduced training time by 84% and reduced the need for more training samples. Our method showed a high level of generalizability, evidenced by highly-consistent segmentations across five-fold cross-validation (sensitivity: 85.0 ± 0.3%, Dice: 0.846 ± 0.011) and the held-out test (sensitivity: 84.9%, Dice: 0.816) sets. In addition, we found excellent agreement of FC thickness with ground truth (2.95 ± 20.73 µm), giving clinically insignificant bias. There was excellent reproducibility in pre- and post-stenting pullbacks (average FC angle: 200.9 ± 128.0°/202.0 ± 121.1°). Our fully automated, deep-learning FC segmentation method demonstrated excellent performance, generalizability, and reproducibility on multi-center datasets. It will be useful for multiple research purposes and potentially for planning stent deployments that avoid placing a stent edge over an FC.


Subject(s)
Deep Learning , Plaque, Atherosclerotic , Humans , Tomography, Optical Coherence/methods , Reproducibility of Results , Coronary Vessels/pathology , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Fibrosis
3.
Bioengineering (Basel) ; 10(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36978751

ABSTRACT

Pericoronary adipose tissue (PCAT) features on Computed Tomography (CT) have been shown to reflect local inflammation and increased cardiovascular risk. Our goal was to determine whether PCAT radiomics extracted from coronary CT angiography (CCTA) images are associated with intravascular optical coherence tomography (IVOCT)-identified vulnerable-plaque characteristics (e.g., microchannels (MC) and thin-cap fibroatheroma (TCFA)). The CCTA and IVOCT images of 30 lesions from 25 patients were registered. The vessels with vulnerable plaques were identified from the registered IVOCT images. The PCAT-radiomics features were extracted from the CCTA images for the lesion region of interest (PCAT-LOI) and the entire vessel (PCAT-Vessel). We extracted 1356 radiomic features, including intensity (first-order), shape, and texture features. The features were reduced using standard approaches (e.g., high feature correlation). Using stratified three-fold cross-validation with 1000 repeats, we determined the ability of PCAT-radiomics features from CCTA to predict IVOCT vulnerable-plaque characteristics. In the identification of TCFA lesions, the PCAT-LOI and PCAT-Vessel radiomics models performed comparably (Area Under the Curve (AUC) ± standard deviation 0.78 ± 0.13, 0.77 ± 0.14). For the identification of MC lesions, the PCAT-Vessel radiomics model (0.89 ± 0.09) was moderately better associated than the PCAT-LOI model (0.83 ± 0.12). In addition, both the PCAT-LOI and the PCAT-Vessel radiomics model identified coronary vessels thought to be highly vulnerable to a similar standard (i.e., both TCFA and MC; 0.88 ± 0.10, 0.91 ± 0.09). The most favorable radiomic features tended to be those describing the texture and size of the PCAT. The application of PCAT radiomics can identify coronary vessels with TCFA or MC, consistent with IVOCT. Furthermore, the use of CCTA radiomics may improve risk stratification by noninvasively detecting vulnerable-plaque characteristics that are only visible with IVOCT.

4.
medRxiv ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36711678

ABSTRACT

Pericoronary adipose tissue (PCAT) features on CT have been shown to reflect local inflammation, and signals increased cardiovascular risk. Our goal was to determine if PCAT radiomics extracted from coronary CT angiography (CCTA) images are associated with intravascular optical coherence tomography (IVOCT)-identified vulnerable plaque characteristics (e.g., microchannels [MC] and thin-cap fibroatheroma [TCFA]). CCTA and IVOCT images of 30 lesions from 25 patients were registered. Vessels with vulnerable plaques were identified from the registered IVOCT images. PCAT radiomics features were extracted from CCTA images for the lesion region of interest (PCAT-LOI) and the entire vessel (PCAT-Vessel). We extracted 1356 radiomics features, including intensity (first-order), shape, and texture features. Features were reduced using standard approaches (e.g., high feature correlation). Using stratified three-fold cross-validation with 1000 repeats, we determined the ability of PCAT radiomics features from CCTA to predict IVOCT vulnerable plaque characteristics. In identification of TCFA lesions, PCAT-LOI and PCAT-Vessel radiomics models performed comparably (AUC±standard deviation 0.78±0.13, 0.77±0.14). For identification of MC lesions, PCAT-Vessel radiomics model (0.89±0.09) was moderately better associated than that of PCAT-LOI model (0.83±0.12). Both PCAT-LOI and PCAT-Vessel radiomics models also similarly identified coronary vessels thought to be highly vulnerable (i.e., both TCFA and MC) (0.88±0.10, 0.91±0.09). Favorable radiomics features tended to be those describing texture and size of PCAT. PCAT radiomics can identify coronary vessels with TCFA or MC, consistent with IVOCT. CCTA radiomics may improve risk stratification by noninvasively detecting vulnerable plaque characteristics that are only visible with IVOCT.

5.
Heliyon ; 9(2): e13396, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36816277

ABSTRACT

Background and objective: Compared with other imaging modalities, intravascular optical coherence tomography (IVOCT) has significant advantages for guiding percutaneous coronary interventions, assessing their outcomes, and characterizing plaque components. To aid IVOCT research studies, we developed the Optical Coherence TOmography PlaqUe and Stent (OCTOPUS) analysis software, which provides highly automated, comprehensive analysis of coronary plaques and stents in IVOCT images. Methods: User specifications for OCTOPUS were obtained from detailed, iterative discussions with IVOCT analysts in the Cardiovascular Imaging Core Laboratory at University Hospitals Cleveland Medical Center, a leading laboratory for IVOCT image analysis. To automate image analysis results, the software includes several important algorithmic steps: pre-processing, deep learning plaque segmentation, machine learning identification of stent struts, and registration of pullbacks for sequential comparisons. Intuitive, interactive visualization and manual editing of segmentations were included in the software. Quantifications include stent deployment characteristics (e.g., stent area and stent strut malapposition), strut level analysis, calcium angle, and calcium thickness measurements. Interactive visualizations include (x,y) anatomical, en face, and longitudinal views with optional overlays (e.g., segmented calcifications). To compare images over time, linked visualizations were enabled to display up to four registered vessel segments at a time. Results: OCTOPUS has been deployed for nearly 1 year and is currently being used in multiple IVOCT studies. Underlying plaque segmentation algorithm yielded excellent pixel-wise results (86.2% sensitivity and 0.781 F1 score). Using OCTOPUS on 34 new pullbacks, we determined that following automated segmentation, only 13% and 23% of frames needed any manual touch up for detailed lumen and calcification labeling, respectively. Only up to 3.8% of plaque pixels were modified, leading to an average editing time of only 7.5 s/frame, an approximately 80% reduction compared to manual analysis. Regarding stent analysis, sensitivity and precision were both greater than 90%, and each strut was successfully classified as either covered or uncovered with high sensitivity (94%) and specificity (90%). We demonstrated use cases for sequential analysis. To analyze plaque progression, we loaded multiple pullbacks acquired at different points (e.g., pre-stent, 3-month follow-up, and 18-month follow-up) and evaluated frame-level development of in-stent neo-atherosclerosis. In ex vivo cadaver experiments, the OCTOPUS software enabled visualization and quantitative evaluation of irregular stent deployment in the presence of calcifications identified in pre-stent images. Conclusions: We introduced and evaluated the clinical application of a highly automated software package, OCTOPUS, for quantitative plaque and stent analysis in IVOCT images. The software is currently used as an offline tool for research purposes; however, the software's embedded algorithms may also be useful for real-time treatment planning.

6.
Sci Rep ; 13(1): 18110, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872298

ABSTRACT

It can be difficult/impossible to fully expand a coronary artery stent in a heavily calcified coronary artery lesion. Under-expanded stents are linked to later complications. Here we used machine/deep learning to analyze calcifications in pre-stent intravascular optical coherence tomography (IVOCT) images and predicted the success of vessel expansion. Pre- and post-stent IVOCT image data were obtained from 110 coronary lesions. Lumen and calcifications in pre-stent images were segmented using deep learning, and lesion features were extracted. We analyzed stent expansion along the lesion, enabling frame, segmental, and whole-lesion analyses. We trained regression models to predict the post-stent lumen area and then computed the stent expansion index (SEI). Best performance (root-mean-square-error = 0.04 ± 0.02 mm2, r = 0.94 ± 0.04, p < 0.0001) was achieved when we used features from both lumen and calcification to train a Gaussian regression model for segmental analysis of 31 frames in length. Stents with minimum SEI > 80% were classified as "well-expanded;" others were "under-expanded." Under-expansion classification results (e.g., AUC = 0.85 ± 0.02) were significantly improved over a previous, simple calculation, as well as other machine learning solutions. Promising results suggest that such methods can identify lesions at risk of under-expansion that would be candidates for intervention lesion preparation (e.g., atherectomy).


Subject(s)
Calcinosis , Coronary Artery Disease , Percutaneous Coronary Intervention , Vascular Calcification , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/surgery , Coronary Artery Disease/pathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/surgery , Coronary Vessels/pathology , Tomography, Optical Coherence/methods , Treatment Outcome , Predictive Value of Tests , Stents , Calcinosis/pathology , Coronary Angiography , Vascular Calcification/diagnostic imaging , Vascular Calcification/pathology
7.
Sci Rep ; 12(1): 21454, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509806

ABSTRACT

Thin-cap fibroatheroma (TCFA) and plaque rupture have been recognized as the most frequent risk factor for thrombosis and acute coronary syndrome. Intravascular optical coherence tomography (IVOCT) can identify TCFA and assess cap thickness, which provides an opportunity to assess plaque vulnerability. We developed an automated method that can detect lipidous plaque and assess fibrous cap thickness in IVOCT images. This study analyzed a total of 4360 IVOCT image frames of 77 lesions among 41 patients. Expert cardiologists manually labeled lipidous plaque based on established criteria. To improve segmentation performance, preprocessing included lumen segmentation, pixel-shifting, and noise filtering on the raw polar (r, θ) IVOCT images. We used the DeepLab-v3 plus deep learning model to classify lipidous plaque pixels. After lipid detection, we automatically detected the outer border of the fibrous cap using a special dynamic programming algorithm and assessed the cap thickness. Our method provided excellent discriminability of lipid plaque with a sensitivity of 85.8% and A-line Dice coefficient of 0.837. By comparing lipid angle measurements between two analysts following editing of our automated software, we found good agreement by Bland-Altman analysis (difference 6.7° ± 17°; mean ~ 196°). Our method accurately detected the fibrous cap from the detected lipid plaque. Automated analysis required a significant modification for only 5.5% frames. Furthermore, our method showed a good agreement of fibrous cap thickness between two analysts with Bland-Altman analysis (4.2 ± 14.6 µm; mean ~ 175 µm), indicating little bias between users and good reproducibility of the measurement. We developed a fully automated method for fibrous cap quantification in IVOCT images, resulting in good agreement with determinations by analysts. The method has great potential to enable highly automated, repeatable, and comprehensive evaluations of TCFAs.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Humans , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Tomography, Optical Coherence/methods , Coronary Artery Disease/pathology , Reproducibility of Results , Plaque, Atherosclerotic/pathology , Fibrosis , Lipids
8.
Article in English | MEDLINE | ID: mdl-36465096

ABSTRACT

Microchannel formation is known to be a significant marker of plaque vulnerability, plaque rupture, and intraplaque hemorrhage, which are responsible for plaque progression. We developed a fully-automated method for detecting microchannels in intravascular optical coherence tomography (IVOCT) images using deep learning. A total of 3,075 IVOCT image frames across 41 patients having 62 microchannel segments were analyzed. Microchannel was manually annotated by expert cardiologists, according to previously established criteria. In order to improve segmentation performance, pre-processing including guidewire detection/removal, lumen segmentation, pixel-shifting, and noise filtering was applied to the raw (r,θ) IVOCT image. We used the DeepLab-v3 plus deep learning model with the Xception backbone network for identifying microchannel candidates. After microchannel candidate detection, each candidate was classified as either microchannel or no-microchannel using a convolutional neural network (CNN) classification model. Our method provided excellent segmentation of microchannel with a Dice coefficient of 0.811, sensitivity of 92.4%, and specificity of 99.9%. We found that pre-processing and data augmentation were very important to improve results. In addition, a CNN classification step was also helpful to rule out false positives. Furthermore, automated analysis missed only 3% of frames having microchannels and showed no false positives. Our method has great potential to enable highly automated, objective, repeatable, and comprehensive evaluations of vulnerable plaques and treatments. We believe that this method is promising for both research and clinical applications.

9.
Bioengineering (Basel) ; 9(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36354559

ABSTRACT

Microvessels in vascular plaque are associated with plaque progression and are found in plaque rupture and intra-plaque hemorrhage. To analyze this characteristic of vulnerability, we developed an automated deep learning method for detecting microvessels in intravascular optical coherence tomography (IVOCT) images. A total of 8403 IVOCT image frames from 85 lesions and 37 normal segments were analyzed. Manual annotation was performed using a dedicated software (OCTOPUS) previously developed by our group. Data augmentation in the polar (r,θ) domain was applied to raw IVOCT images to ensure that microvessels appear at all possible angles. Pre-processing methods included guidewire/shadow detection, lumen segmentation, pixel shifting, and noise reduction. DeepLab v3+ was used to segment microvessel candidates. A bounding box on each candidate was classified as either microvessel or non-microvessel using a shallow convolutional neural network. For better classification, we used data augmentation (i.e., angle rotation) on bounding boxes with a microvessel during network training. Data augmentation and pre-processing steps improved microvessel segmentation performance significantly, yielding a method with Dice of 0.71 ± 0.10 and pixel-wise sensitivity/specificity of 87.7 ± 6.6%/99.8 ± 0.1%. The network for classifying microvessels from candidates performed exceptionally well, with sensitivity of 99.5 ± 0.3%, specificity of 98.8 ± 1.0%, and accuracy of 99.1 ± 0.5%. The classification step eliminated the majority of residual false positives and the Dice coefficient increased from 0.71 to 0.73. In addition, our method produced 698 image frames with microvessels present, compared with 730 from manual analysis, representing a 4.4% difference. When compared with the manual method, the automated method improved microvessel continuity, implying improved segmentation performance. The method will be useful for research purposes as well as potential future treatment planning.

10.
Front Cardiovasc Med ; 9: 1079046, 2022.
Article in English | MEDLINE | ID: mdl-36588557

ABSTRACT

Introduction: In-stent neoatherosclerosis has emerged as a crucial factor in post-stent complications including late in-stent restenosis and very late stent thrombosis. In this study, we investigated the ability of quantitative plaque characteristics from intravascular optical coherence tomography (IVOCT) images taken just prior to stent implantation to predict neoatherosclerosis after implantation. Methods: This was a sub-study of the TRiple Assessment of Neointima Stent FOrmation to Reabsorbable polyMer with Optical Coherence Tomography (TRANSFORM-OCT) trial. Images were obtained before and 18 months after stent implantation. Final analysis included images of 180 lesions from 90 patients; each patient had images of two lesions in different coronary arteries. A total of 17 IVOCT plaque features, including lesion length, lumen (e.g., area and diameter); calcium (e.g., angle and thickness); and fibrous cap (FC) features (e.g., thickness, surface area, and burden), were automatically extracted from the baseline IVOCT images before stenting using dedicated software developed by our group (OCTOPUS). The predictive value of baseline IVOCT plaque features for neoatherosclerosis development after stent implantation was assessed using univariate/multivariate logistic regression and receiver operating characteristic (ROC) analyses. Results: Follow-up IVOCT identified stents with (n = 19) and without (n = 161) neoatherosclerosis. Greater lesion length and maximum calcium angle and features related to FC were associated with a higher prevalence of neoatherosclerosis after stent implantation (p < 0.05). Hierarchical clustering identified six clusters with the best prediction p-values. In univariate logistic regression analysis, maximum calcium angle, minimum calcium thickness, maximum FC angle, maximum FC area, FC surface area, and FC burden were significant predictors of neoatherosclerosis. Lesion length and features related to the lumen were not significantly different between the two groups. In multivariate logistic regression analysis, only larger FC surface area was strongly associated with neoatherosclerosis (odds ratio 1.38, 95% confidence interval [CI] 1.05-1.80, p < 0.05). The area under the ROC curve was 0.901 (95% CI 0.859-0.946, p < 0.05) for FC surface area. Conclusion: Post-stent neoatherosclerosis can be predicted by quantitative IVOCT imaging of plaque characteristics prior to stent implantation. Our findings highlight the additional clinical benefits of utilizing IVOCT imaging in the catheterization laboratory to inform treatment decision-making and improve outcomes.

11.
Cardiovasc Revasc Med ; 43: 62-70, 2022 10.
Article in English | MEDLINE | ID: mdl-35597721

ABSTRACT

INTRODUCTION: Interventional cardiologists make adjustments in the presence of coronary calcifications known to limit stent expansion, but proper balloon sizing, plaque-modification approaches, and high-pressure regimens are not well established. Intravascular optical coherence tomography (IVOCT) provides high-resolution images of coronary tissues, including detailed imaging of calcifications, and accurate measurements of stent deployment, providing a means for detailed study of stent deployment. OBJECTIVE: Evaluate stent expansion in an ex vivo model of calcified coronary arteries as a function of balloon size and high-pressure, post-dilatation strategies. METHODS: We conducted experiments on cadaver hearts with calcified coronary lesions. We assessed stent expansion as a function of size and pressure of non-compliant (NC) balloons (i.e., nominal, 0.5, 1.0, and 1.5 mm balloons at 10, 20 and 30 atm). IVOCT images were acquired pre-stent, post-stent, and at all post-dilatations. Stent expansion was calculated using minimum expansion index (MEI). RESULTS: We analyzed 134 IVOCT pullbacks from ten ex-vivo experiments. The mean distal and proximal reference lumen diameters were 2.2 ± 0.5 mm and 2.5 ± 0.7 mm, respectively, 80% of times using a 3.0 mm diameter stent. Overall, based on stent sizing, a good expansion (MEI ≥ 80%) was reached using the 1:1 NC balloon at 20 atm, and expansion > 100% was reached using the 1:1 NC balloon at 30 atm. In the subgroup analysis, comparing low-calcified and high-calcified lesions, good expansion (MEI ≥ 80%) was reached using the 1:1 NC balloon at nominal pressure (10 atm) versus using 1:1 NC balloon at 30 atm, respectively. Significant vessel rupture was identified in all the vessels mainly upon post-dilatation with larger balloons, and 60% of the experiments (6 vessels, 3 in each calcium subgroup) presented rupture with the +1.0 mm NC balloon at 20 atm. CONCLUSION: When treating calcified lesions, good stent expansion was reached using smaller balloons at higher pressures without coronary injuries, whereas bigger balloons yielded unpredictable expansion even at lower pressures and demonstrated potential harmful damages to the vessels. As these findings could help physicians with appropriate planning of stent post-dilatation for calcified lesions, it will be important to clinically evaluate the recommended protocol.


Subject(s)
Angioplasty, Balloon, Coronary , Coronary Artery Disease , Angioplasty, Balloon, Coronary/adverse effects , Angioplasty, Balloon, Coronary/methods , Calcium , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Vessels/diagnostic imaging , Dilatation , Humans , Stents , Tomography, Optical Coherence , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL