Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(3): 464-466, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36693375

ABSTRACT

T cells and their derived cytokines have been shown to modulate brain function. In this issue of Cell, Zhu, Yan, and colleagues demonstrate that opioid use impacts the crosstalk between the CNS and the peripheral immune system. Regulatory T cell (Treg)-derived IFN-γ signaling translates into synaptic weakening in the nucleus accumbens (NAc) to impart withdrawal-induced behavioral dysfunction.


Subject(s)
Nucleus Accumbens , Opioid-Related Disorders , Signal Transduction , Nucleus Accumbens/physiology , Opioid-Related Disorders/pathology , Cytokines
2.
Immunity ; 57(6): 1394-1412.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38821054

ABSTRACT

Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative-region-associated microglia (PAMs) in developing white matter and disease-associated microglia (DAMs) prevalent in various neurodegenerative conditions. PAMs and DAMs share a similar core gene signature. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we generated an inducible Cre driver line, Clec7a-CreERT2, that targets PAMs and DAMs in the brain parenchyma. Utilizing this tool, we profiled labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM and DAM gene expression. Through long-term tracking, we demonstrated microglial state plasticity. Lastly, we specifically depleted DAMs in demyelination, revealing their roles in disease recovery. Together, we provide a versatile genetic tool to characterize microglial states in CNS development and disease.


Subject(s)
Cell Plasticity , Microglia , Remyelination , Microglia/physiology , Animals , Mice , Cell Plasticity/genetics , Demyelinating Diseases/genetics , Mice, Inbred C57BL , Mice, Transgenic , Disease Models, Animal , Brain , Myelin Sheath/metabolism , White Matter/pathology
3.
Nature ; 627(8002): 165-173, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326613

ABSTRACT

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Subject(s)
Arachnoid , Brain , Dura Mater , Animals , Humans , Mice , Arachnoid/anatomy & histology , Arachnoid/blood supply , Arachnoid/immunology , Arachnoid/metabolism , Biological Transport , Brain/anatomy & histology , Brain/blood supply , Brain/immunology , Brain/metabolism , Dura Mater/anatomy & histology , Dura Mater/blood supply , Dura Mater/immunology , Dura Mater/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Gene Expression Profiling , Magnetic Resonance Imaging , Mice, Transgenic , Subarachnoid Space/anatomy & histology , Subarachnoid Space/blood supply , Subarachnoid Space/immunology , Subarachnoid Space/metabolism , Cerebrospinal Fluid/metabolism , Veins/metabolism
4.
Nature ; 615(7953): 668-677, 2023 03.
Article in English | MEDLINE | ID: mdl-36890231

ABSTRACT

Extracellular deposition of amyloid-ß as neuritic plaques and intracellular accumulation of hyperphosphorylated, aggregated tau as neurofibrillary tangles are two of the characteristic hallmarks of Alzheimer's disease1,2. The regional progression of brain atrophy in Alzheimer's disease highly correlates with tau accumulation but not amyloid deposition3-5, and the mechanisms of tau-mediated neurodegeneration remain elusive. Innate immune responses represent a common pathway for the initiation and progression of some neurodegenerative diseases. So far, little is known about the extent or role of the adaptive immune response and its interaction with the innate immune response in the presence of amyloid-ß or tau pathology6. Here we systematically compared the immunological milieux in the brain of mice with amyloid deposition or tau aggregation and neurodegeneration. We found that mice with tauopathy but not those with amyloid deposition developed a unique innate and adaptive immune response and that depletion of microglia or T cells blocked tau-mediated neurodegeneration. Numbers of T cells, especially those of cytotoxic T cells, were markedly increased in areas with tau pathology in mice with tauopathy and in the Alzheimer's disease brain. T cell numbers correlated with the extent of neuronal loss, and the cells dynamically transformed their cellular characteristics from activated to exhausted states along with unique TCR clonal expansion. Inhibition of interferon-γ and PDCD1 signalling both significantly ameliorated brain atrophy. Our results thus reveal a tauopathy- and neurodegeneration-related immune hub involving activated microglia and T cell responses, which could serve as therapeutic targets for preventing neurodegeneration in Alzheimer's disease and primary tauopathies.


Subject(s)
Brain , Microglia , Neurofibrillary Tangles , T-Lymphocytes , Tauopathies , Animals , Mice , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/immunology , Amyloid beta-Peptides/metabolism , Brain/immunology , Brain/metabolism , Brain/pathology , Microglia/immunology , Microglia/metabolism , Neurofibrillary Tangles/immunology , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , tau Proteins/immunology , tau Proteins/metabolism , Tauopathies/immunology , Tauopathies/metabolism , Tauopathies/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Plaque, Amyloid/immunology , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/pathology , Clone Cells/immunology , Clone Cells/metabolism , Clone Cells/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Immunity, Innate
5.
BMC Cancer ; 24(1): 185, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326737

ABSTRACT

BACKGROUND: Predicting tumor responses to neoadjuvant chemotherapy (NAC) is critical for evaluating prognosis and designing treatment strategies for patients with breast cancer; however, there are no reliable biomarkers that can effectively assess tumor responses. Therefore, we aimed to evaluate the clinical feasibility of using extracellular vesicles (EVs) to predict tumor response after NAC. METHODS: Drug-resistant triple-negative breast cancer (TNBC) cell lines were successfully established, which developed specific morphologies and rapidly growing features. To detect resistance to chemotherapeutic drugs, EVs were isolated from cultured cells and plasma samples collected post-NAC from 36 patients with breast cancer. RESULTS: Among the differentially expressed gene profiles between parental and drug-resistant cell lines, drug efflux transporters such as MDR1, MRP1, and BCRP were highly expressed in resistant cell lines. Drug efflux transporters have been identified not only in cell lines but also in EVs released from parental cells using immunoaffinity-based EV isolation. The expression of drug resistance markers in EVs was relatively high in patients with residual disease compared to those with a pathological complete response. CONCLUSIONS: The optimal combination of drug-resistant EV markers was significantly efficient in predicting resistance to NAC with 81.82% sensitivity and 92.86% specificity.


Subject(s)
Extracellular Vesicles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Neoadjuvant Therapy , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Neoplasm Proteins/metabolism , Extracellular Vesicles/metabolism
6.
Ecotoxicol Environ Saf ; 272: 116108, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38364764

ABSTRACT

The importance of evaluating the cardiotoxicity potential of common chemicals as well as new drugs is increasing as a result of the development of animal alternative test methods using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Bisphenol A (BPA), which is used as a main material in plastics, is known as an endocrine-disrupting chemical, and recently reported to cause cardiotoxicity through inhibition of ion channels in CMs even with acute exposure. Accordingly, the need for the development of alternatives to BPA has been highlighted, and structural analogues including bisphenol AF, C, E, F, and S have been developed. However, cardiotoxicity data for analogues of bisphenol are not well known. In this study, in order to evaluate the cardiotoxicity potential of analogues, including BPA, a survival test of hiPSC-CMs and a dual-cardiotoxicity evaluation based on a multi-electrode array were performed. Acute exposure to all bisphenol analogues did not affect survival rate, but spike amplitude, beat period, and field potential duration were decreased in a dose-dependent manner in most of the bisphenols except bisphenol S. In addition, bisphenols, except for bisphenol S, reduced the contractile force of hiPSC-CMs and resulted in beating arrest at high doses. Taken together, it can be suggested that the developed bisphenol analogues could cause cardiotoxicity even with acute exposure, and it is considered that the application of the MEA-based dual-cardiotoxicity evaluation method can be an effective help in the development of safe alternatives.


Subject(s)
Benzhydryl Compounds , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Humans , Cardiotoxicity/etiology , Induced Pluripotent Stem Cells/physiology , Phenols/toxicity
7.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892434

ABSTRACT

Many different types of nanoparticles have been suggested for tumor-targeted theranosis. However, most systems were prepared through a series of complicated processes and could not even overcome the blood-immune barriers. For the accurate diagnosis and effective treatment of cancers, herein we suggested the lipid micellar structure capturing quantum dot (QD) for cancer theranosis. The QD/lipid micelles (QDMs) were prepared using a simple self-assembly procedure and then conjugated with anti-epidermal growth factor receptor (EGFR) antibodies for tumor targeting. As a therapeutic agent, Bcl2 siRNA-cholesterol conjugates were loaded on the surface of QDMs. The EGFR-directed QDMs containing Bcl2 siRNA, so-called immuno-QDM/siBcl2 (iQDM/siBcl2), exhibited the more effective delivery of QDs and siBcl2 to target human colorectal cancer cells in cultures as well as in mouse xenografts. The effective in vivo targeting of iQDM/siBcl2 resulted in a more enhanced therapeutic efficacy of siBcl2 to the target cancer in mice. Based on the results, anti-EGFR QDM capturing therapeutic siRNA could be suggested as an alternative modality for tumor-targeted theranosis.


Subject(s)
ErbB Receptors , Proto-Oncogene Proteins c-bcl-2 , Quantum Dots , RNA, Small Interfering , Quantum Dots/chemistry , Animals , ErbB Receptors/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Humans , RNA, Small Interfering/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Mice , Cell Line, Tumor , Nanoparticles/chemistry , Lipids/chemistry , Theranostic Nanomedicine/methods , Xenograft Model Antitumor Assays , Micelles
8.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338667

ABSTRACT

mRNA vaccines have emerged as a pivotal tool in combating COVID-19, offering an advanced approach to immunization. A key challenge with these vaccines is their need for extremely-low-temperature storage, which affects their stability and shelf life. Our research addresses this issue by enhancing the stability of mRNA vaccines through a novel cationic lipid, O,O'-dimyristyl-N-lysyl aspartate (DMKD). DMKD effectively binds with mRNA, improving vaccine stability. We also integrated phosphatidylserine (PS) into the formulation to boost immune response by promoting the uptake of these nanoparticles by immune cells. Our findings reveal that DMKD-PS nanoparticles maintain structural integrity under long-term refrigeration and effectively protect mRNA. When tested, these nanoparticles containing green fluorescent protein (GFP) mRNA outperformed other commercial lipid nanoparticles in protein expression, both in immune cells (RAW 264.7 mouse macrophage) and non-immune cells (CT26 mouse colorectal carcinoma cells). Importantly, in vivo studies show that DMKD-PS nanoparticles are safely eliminated from the body within 48 h. The results suggest that DMKD-PS nanoparticles present a promising alternative for mRNA vaccine delivery, enhancing both the stability and effectiveness of these vaccines.


Subject(s)
Liposomes , Nanoparticles , Vaccines , Animals , Mice , RNA, Messenger/chemistry , mRNA Vaccines , Transfection , Antigen-Presenting Cells , Nanoparticles/chemistry
9.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339090

ABSTRACT

Combining standard surgical procedures with personalized chemotherapy and the continuous monitoring of cancer progression is necessary for effective NSCLC treatment. In this study, we developed liposomal nanoparticles as theranostic agents capable of simultaneous therapy for and imaging of target cancer cells. Copper-64 (64Cu), with a clinically practical half-life (t1/2 = 12.7 h) and decay properties, was selected as the radioisotope for molecular PET imaging. An anti-epidermal growth factor receptor (anti-EGFR) antibody was used to achieve target-specific delivery. Simultaneously, the chemotherapeutic agent doxorubicin (Dox) was encapsulated within the liposomes using a pH-gradient method. The conjugates of 64Cu-labeled and anti-EGFR antibody-conjugated micelles were inserted into the doxorubicin-encapsulating liposomes via a post-insertion procedure (64Cu-Dox-immunoliposomes). We evaluated the size and zeta-potential of the liposomes and analyzed target-specific cell binding and cytotoxicity in EGFR-positive cell lines. Then, we analyzed the specific therapeutic effect and PET imaging of the 64Cu-Dox-immunoliposomes with the A549 xenograft mouse model. In vivo therapeutic experiments on the mouse models demonstrated that the doxorubicin-containing 64Cu-immunoliposomes effectively inhibited tumor growth. Moreover, the 64Cu-immunoliposomes provided superior in vivo PET images of the tumors compared to the untargeted liposomes. We suggest that nanoparticles will be the potential platform for cancer treatment as a widely applicable theranostic system.


Subject(s)
Copper Radioisotopes , Doxorubicin , Liposomes , Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Copper , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , Drug Delivery Systems/methods , ErbB Receptors/metabolism , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Polyethylene Glycols , Positron-Emission Tomography , Precision Medicine
10.
BMC Med Imaging ; 23(1): 113, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620849

ABSTRACT

PURPOSE: This study aimed to develop and validate a deep learning-based method that detects inter-breath-hold motion from an estimated cardiac long axis image reconstructed from a stack of short axis cardiac cine images. METHODS: Cardiac cine magnetic resonance image data from all short axis slices and 2-/3-/4-chamber long axis slices were considered for the study. Data from 740 subjects were used for model development, and data from 491 subjects were used for testing. The method utilized the slice orientation information to calculate the intersection line of a short axis plane and a long axis plane. An estimated long axis image is shown along with a long axis image as a motion-free reference image, which enables visual assessment of the inter-breath-hold motion from the estimated long axis image. The estimated long axis image was labeled as either a motion-corrupted or a motion-free image. Deep convolutional neural network (CNN) models were developed and validated using the labeled data. RESULTS: The method was fully automatic in obtaining long axis images reformatted from a 3D stack of short axis slices and predicting the presence/absence of inter-breath-hold motion. The deep CNN model with EfficientNet-B0 as a feature extractor was effective at motion detection with an area under the receiver operating characteristic (AUC) curve of 0.87 for the testing data. CONCLUSION: The proposed method can automatically assess inter-breath-hold motion in a stack of cardiac cine short axis slices. The method can help prospectively reacquire problematic short axis slices or retrospectively correct motion.


Subject(s)
Breath Holding , Heart , Humans , Retrospective Studies , Heart/diagnostic imaging , Motion , Neural Networks, Computer
11.
BMC Surg ; 23(1): 227, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563582

ABSTRACT

PURPOSE: Below knee amputation (BKA) is a common surgical procedure for diabetic foot ulcers and necrotizing lower limb fasciitis patients. However, it is a painful procedure and inadequate postoperative analgesia impedes rehabilitation and prolongs hospitalization. An ideal pain management regimen should provide superior analgesia while minimizing opioid consumption and improving rehabilitation. METHODS: We retrospectively reviewed medical charts of 218 patients who underwent BKA for diabetic foot ulcer or necrotizing lower limb fasciitis at a single center between January 2017 and September 2020. Two groups were analyzed: patients who received dual nerve block (DNB) before surgery (Group I; n = 104), and patients who did not (Group II; n = 93). By the exclusion criteria, 21 patients were excluded. The femoral and sciatic nerves were each blocked separately under ultrasound guidance. This procedure was performed immediately before the operation. RESULTS: Group I patients' subjective pain scores were significantly lower than that of Group II at 6, 12, and 24 h after BKA (P < 0.05). Group I's morphine milligram equivalent (MME) was significantly lower than those of Group II at 72 h after BKA (P < 0.05). Moreover, the rate of postoperative nausea and vomiting (PONV) and delirium was significantly lower in Group I patients than that in Group II patients. CONCLUSION: Ultrasound-guided lower extremity nerve block surgery is excellent for early postoperative pain control, could be used as an accurate and effective pain control method, and can reduce the side effects of opioid consumption after BKA.


Subject(s)
Arthroplasty, Replacement, Knee , Diabetic Foot , Fasciitis , Nerve Block , Humans , Analgesics, Opioid/therapeutic use , Analgesics, Opioid/pharmacology , Pain, Postoperative/drug therapy , Retrospective Studies , Femoral Nerve , Arthroplasty, Replacement, Knee/methods , Nerve Block/methods , Ultrasonography, Interventional , Amputation, Surgical , Fasciitis/chemically induced , Fasciitis/drug therapy , Anesthetics, Local/adverse effects
12.
Nano Lett ; 22(3): 1316-1323, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35049311

ABSTRACT

On-demand NW light sources in a photonic integrated circuit (PIC) have faced several practical challenges. Here, we report on an all-graphene-contact, electrically pumped, on-demand transferrable NW source that is fabricated by implementing an all-graphene-contact approach in combination with a highly accurate microtransfer printing technique. A vertically p-i-n-doped top-down-fabricated semiconductor NW with optical gain structures is electrically pumped through the patterned multilayered graphene contacts. Electroluminescence (EL) spectroscopy results reveal that the electrically driven NW device exhibits strong EL emission between the contacts and displays waveguiding properties. Further, a single NW device is precisely integrated into an existing photonic waveguide to perform light coupling and waveguiding experiments. Three-dimensional numerical simulation results show a good agreement with experimental observations. We believe that our all-graphene-contact approach is readily applicable to various micro/nanostructures and devices, which facilitates stable electrical operation and thus extends their practical applicability in compact integrated circuits.

13.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069324

ABSTRACT

Tissue-specific gene expression generates fundamental differences in the function of each tissue and affects the characteristics of the tumors that are created as a result. However, it is unclear how much the tissue specificity is conserved during grafting of the primary tumor into an immune-compromised mouse model. Here, we performed a comparative RNA-seq analysis of four different primary-patient derived xenograft (PDX) tumors. The analysis revealed a conserved RNA biotype distribution of primary-PDX pairs, as revealed by previous works. Interestingly, we detected significant changes in the splicing pattern of PDX, which was mainly comprised of skipped exons. This was confirmed by splicing variant-specific RT-PCR analysis. On the other hand, the correlation analysis for the tissue-specific genes indicated overall strong positive correlations between the primary and PDX tumor pairs, with the exception of gastric cancer cases, which showed an inverse correlation. These data propose a tissue-specific change in splicing events during PDX formation as a variable factor that affects primary-PDX integrity.


Subject(s)
Alternative Splicing , Stomach Neoplasms , Animals , Mice , Humans , Stomach Neoplasms/pathology , RNA Splicing/genetics , Sequence Analysis, RNA
14.
J Cell Mol Med ; 26(20): 5122-5134, 2022 10.
Article in English | MEDLINE | ID: mdl-36071453

ABSTRACT

Nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a membrane protein that mediates cell adhesion. The role of Ninj1 during inflammatory response has been widely investigated in macrophages and endothelial cells. Ninj1 is expressed in various tissues, and the liver also expresses high levels of Ninj1. Although the hepatic upregulation of Ninj1 has been reported in human hepatocellular carcinoma and septic mice, little is known of its function during the pathogenesis of liver diseases. In the present study, the role of Ninj1 in liver inflammation was explored using lipopolysaccharide (LPS)/D-galactosamine (D-gal)-induced acute liver failure (ALF) model. When treated with LPS/D-gal, conventional Ninj1 knock-out (KO) mice exhibited a mild inflammatory phenotype as compared with wild-type (WT) mice. Unexpectedly, myeloid-specific Ninj1 KO mice showed no attenuation of LPS/D-gal-induced liver injury. Whereas, Ninj1 KO primary hepatocytes were relatively insensitive to TNF-α-induced caspase activation as compared with WT primary hepatocytes. Also, Ninj1 knock-down in L929 and AML12 cells and Ninj1 KO in HepG2 cells ameliorated TNF-α-mediated apoptosis. Consistent with in vitro results, hepatocyte-specific ablation of Ninj1 in mice alleviated LPS/D-gal-induced ALF. Summarizing, our in vivo and in vitro studies show that lack of Ninj1 in hepatocytes diminishes LPS/D-gal-induced ALF by alleviating TNF-α/TNFR1-induced cell death.


Subject(s)
Cell Adhesion Molecules, Neuronal , Galactosamine , Liver Failure, Acute , Nerve Growth Factors , Animals , Apoptosis , Caspases/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Endothelial Cells/metabolism , Hepatocytes/metabolism , Humans , Lipopolysaccharides , Liver/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/genetics , Liver Failure, Acute/metabolism , Mice , Mice, Knockout , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
15.
Biotechnol Bioeng ; 119(5): 1264-1277, 2022 05.
Article in English | MEDLINE | ID: mdl-35099812

ABSTRACT

2'-Fucosyllactose (2'-FL) is the most abundant oligosaccharide in human milk and one of the most actively studied human milk oligosaccharides (HMOs). When 2'-FL is produced through biological production using a microorganism, like Escherichia coli, d-lactose is often externally fed as an acceptor substrate for fucosyltransferase (FT). When d-glucose is used as a carbon source for the cell growth and d-lactose is transported by lactose permease (LacY) in lac operon, d-lactose transport is under the control of catabolite repression (CR), limiting the supply of d-lactose for FT reaction in the cell, hence decreasing the production of 2'-FL. In this study, a remarkable increase of 2'-FL production was achieved by relieving the CR from the lac operon of the host E. coli BL21 and introducing adequate site-specific mutations into α-1,2-FT (FutC) for enhancement of catalytic activity and solubility. For the host engineering, the native lac promoter (Plac ) was substituted for tac promoter (Ptac ), so that the lac operon could be turned on, but not subjected to CR by high d-glucose concentration. Next, for protein engineering of FutC, family multiple sequence analysis for conserved amino acid sequences and protein-ligand substrate docking analysis led us to find several mutation sites, which could increase the solubility of FutC and its activity. As a result, a combination of four mutation sites (F40S/Q150H/C151R/Q239S) was identified as the best candidate, and the quadruple mutant of FutC enhanced 2'-FL titer by 2.4-fold. When the above-mentioned E. coli mutant host transformed with the quadruple mutant of futC was subjected to fed-batch culture, 40 g l-1 of 2'-FL titer was achieved with the productivity of 0.55 g l-1 h-1 and the specific 2'-FL yield of 1.0 g g-1 dry cell weight.


Subject(s)
Escherichia coli Proteins , Symporters , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Glucose/metabolism , Humans , Lac Operon , Lactose/metabolism , Monosaccharide Transport Proteins/genetics , Oligosaccharides/metabolism , Solubility , Symporters/genetics , Trisaccharides
16.
BMC Musculoskelet Disord ; 23(1): 1130, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36572868

ABSTRACT

INTRODUCTION: As the radiomics technique using texture features in CT is adopted for accessing DXA-equivalent bone mineral density (BMD), this study aims to compare BMD by DXA and predicted BMD to investigate the impact of obesity and central obesity in general patients. MATERIALS AND METHODS: A total of 710 cases (621 patients) obtained from May 6, 2012, to June 30, 2021, were used in the study. We focused both their abdomen & pelvis CT's first lumbar vertebrae axial cuts to predict estimated BMD and bone mineral content (BMC). In each patient's CT, we extracted the largest trabecular region of the L1 vertebral body as a region of interest (ROI) using the gray-level co-occurrence matrices (GLCM) technique, and linear regression was applied to predict the indices. Cases were divided by central obesity/overall obesity and normal group by body mass index (BMI), waist circumference (WC), or index of central obesity (ICO) standard. RESULTS: The coefficients were all above 0.73, respectively. P-values from ICO were over 0.05 when the measures were Hip BMD and Hip BMC. In contrast, those from ICO were 0.0131 and 0.0351 when the measures were L1 BMD and L1 BMC, respectively, which show a difference between the two groups. CONCLUSIONS: The CT HU texture analysis method was an effective and economical method for measuring estimated BMD and BMC and evaluating the impact of obesity. We found that central obesity especially exerted an effect on the disturbance of the clinical BMD measurements since groups were significantly different under the ICO standard.


Subject(s)
Bone Density , Obesity, Abdominal , Humans , Absorptiometry, Photon/methods , Obesity, Abdominal/complications , Obesity, Abdominal/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Body Mass Index
17.
Chem Soc Rev ; 50(17): 9375-9390, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34231620

ABSTRACT

Solution-processable organic materials for emerging electronics can generally be divided into two classes of semiconductors, organic small molecules and polymers. The theoretical thermodynamic limits of device performance are largely determined by the molecular structure of these compounds, and advances in synthetic routes have led to significant progress in charge mobilities and light conversion and light emission efficiencies over the past several decades. Still, the uncontrolled formation of out-of-equilibrium film microstructures and unfavorable polymorphs during rapid solution processing remains a critical bottleneck facing the commercialization of these materials. This tutorial review provides an overview of the use of nanoconfining scaffolds to impose order onto solution-processed semiconducting films to overcome this limitation. For organic semiconducting small molecules and polymers, which typically exhibit strong crystal growth and charge transport anisotropy along different crystallographic directions, nanoconfining crystallization within nanopores and nanogrooves can preferentially orient the fast charge transport direction of crystals with the direction of current flow in devices. Nanoconfinement can also stabilize high-performance metastable polymorphs by shifting their relative Gibbs free energies via increasing the surface area-to-volume ratio. Promisingly, such nanoconfinement-induced improvements in film and crystal structures have been demonstrated to enhance the performance and stability of emerging optoelectronics that will enable large-scale manufacturing of flexible, lightweight displays and solar cells.

18.
Cancer Sci ; 112(12): 5078-5087, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34626053

ABSTRACT

Extracellular vesicles (EV) have been emerging as potential biomarkers for disease monitoring. In particular, tumor-derived EV (TDE) are known to carry oncogenic miRNA, so they can be used for diagnosis of early cancer by analyzing the expression levels of EV-miRNA circulating in the blood. Here, using our novel microfluidic device, we rapidly and selectively isolate cancerous EV expressing breast cancer-derived surface markers CD49f and EpCAM within 2 minutes. Based on seven candidates of miRNA nominated from The Cancer Genome Atlas (TCGA) database, the expression levels of miRNA in TDE were validated in a total of 82 individuals, including 62 breast cancer patients and 20 healthy controls. Among seven candidates, four miRNAs (miR-9, miR-16, miR-21, and miR-429) from the EV were highly elevated in early-stage breast cancer patients compared with healthy donors. The combination of significant miRNAs from specific EV has high sensitivities of 0.90, 0.86, 0.88, and 0.84 of the area under the receiver operating characteristic curve (AUC) in each subtype (luminal A, luminal B, HER-2, and triple-negative) of early-stage breast cancer. Our results suggest that the combination of four miRNA signatures of specific EV could serve as a sensitive and specific biomarker and enable early diagnosis of breast cancer using liquid biopsy.


Subject(s)
Breast Neoplasms/diagnosis , Extracellular Vesicles/genetics , MicroRNAs/genetics , Up-Regulation , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Case-Control Studies , Cell Line, Tumor , Databases, Genetic , Early Detection of Cancer , Epithelial Cell Adhesion Molecule/metabolism , Extracellular Vesicles/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Integrin alpha6/metabolism , MCF-7 Cells , Microfluidic Analytical Techniques/instrumentation , Neoplasm Staging
19.
Nano Lett ; 20(4): 2733-2740, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32109067

ABSTRACT

Infrared photodetectors are sought for diverse applications and their performance relies on photoactive materials and photocurrent generation mechanisms. Here, we fabricate IR photodetectors with heavily hydrogen-doped VO2 (i.e., HVO2) single-crystalline nanoparticles which show two orders greater resistivities than pure VO2. The I-V plots obtained under IR light irradiation are expressed by space charge limited current mechanism and the increase in photocurrent occurs due to the increase in the number of photoinduced trap sites. This phenomenon remarkably improves the key parameters at λ = 780 nm of high responsivity of 35280 A/W, high detectivity of 1.12 × 1013 Jones, and strikingly fast response times of 0.6-2.5 ns, that is, 3 orders of magnitude faster than the best records of two-dimensional structures and heterostructures. Density functional theory calculations illustrate that the generation of photoinduced trap sites is attributed to the movement of hydrogen atoms to less stable interstitial sites in VO2 under light exposure.

20.
Int J Mol Sci ; 22(24)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34948417

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most aggressive malignancies and has high mortality and poor survival rates. Therefore, there is an urgent need to discover non-invasive biomarkers for early detection before PDAC reaches the incurable stage. We hypothesized that liquid biopsy of PDAC-derived extracellular vesicles (PDEs) containing abundant microRNAs (miRNAs) could be used for early diagnosis of PDAC because they can be selectively enriched and because they are biologically stable. We isolated PDEs by immunocapture using magnetic beads, and we identified 13 miRNA candidates in 20 pancreatic cancer patients and 20 normal controls. We found that expression of five miRNAs, including miR-10b, miR-16, miR-155, miR-429, and miR-1290, was markedly higher in PDEs. Furthermore, the miRNA signatures along with serum carbohydrate antigen 19-9 (CA19-9) were optimized by logistic regression, and the miRNA signature and CA19-9 combination markers (CMs) were effective at differentiating PDAC patients from normal controls. As a result, the CMs represented a high sensitivity (AUC, 0.964; sensitivity, 100%; specificity, 80%) and a high specificity (AUC, 0.962; sensitivity, 85.71%; specificity, 100%). These findings suggest that five miRNAs expressed in PDEs and CA19-9 are valuable biomarkers for screening and diagnosis of pancreatic cancer by liquid biopsy.


Subject(s)
CA-19-9 Antigen/blood , Carcinoma, Pancreatic Ductal/genetics , MicroRNAs/genetics , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/blood , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Liquid Biopsy , Pancreatic Neoplasms/blood , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL