Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 375
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 24(8): e56335, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37341560

ABSTRACT

While there is growing evidence that many epigenetically silenced genes in cancer are tumour suppressor candidates, their significance in cancer biology remains unclear. Here, we identify human Neuralized (NEURL), which acts as a novel tumour suppressor targeting oncogenic Wnt/ß-catenin signalling in human cancers. The expression of NEURL is epigenetically regulated and markedly suppressed in human colorectal cancer. We, therefore, considered NEURL to be a bona fide tumour suppressor in colorectal cancer and demonstrate that this tumour suppressive function depends on NEURL-mediated oncogenic ß-catenin degradation. We find that NEURL acts as an E3 ubiquitin ligase, interacting directly with oncogenic ß-catenin, and reducing its cytoplasmic levels in a GSK3ß- and ß-TrCP-independent manner, indicating that NEURL-ß-catenin interactions can lead to a disruption of the canonical Wnt/ß-catenin pathway. This study suggests that NEURL is a therapeutic target against human cancers and that it acts by regulating oncogenic Wnt/ß-catenin signalling.


Subject(s)
Colonic Neoplasms , beta Catenin , Humans , beta Catenin/genetics , beta Catenin/metabolism , Wnt Signaling Pathway , Colonic Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism , beta-Transducin Repeat-Containing Proteins/genetics , beta-Transducin Repeat-Containing Proteins/metabolism , Cell Line, Tumor
2.
Biochemistry ; 63(3): 312-325, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38271599

ABSTRACT

We report a thorough investigation of the role of single-stranded thymidine (ssT) linkers in the stability and flexibility of minimal, multistranded DNA nanostructures. We systematically explore the impact of varying the number of ssTs in three-way junction motifs (3WJs) on their formation and properties. Through various UV melting experiments and molecular dynamics simulations, we demonstrate that while the number of ssTs minimally affects thermodynamic stability, the increasing ssT regions significantly enhance the structural flexibility of 3WJs. Utilizing this knowledge, we design triangular DNA nanoparticles with varying ssTs, all showing exceptional assembly efficiency except for the 0T triangle. All triangles demonstrate enhanced stability in blood serum and are nonimmunostimulatory and nontoxic in mammalian cell lines. The 4T 3WJ is chosen as the building block for constructing other polygons due to its enhanced flexibility and favorable physicochemical characteristics, making it a versatile choice for creating cost-effective, stable, and functional DNA nanostructures that can be stored in the dehydrated forms while retaining their structures. Our study provides valuable insights into the design and application of nucleic acid nanostructures, emphasizing the importance of understanding stability and flexibility in the realm of nucleic acid nanotechnology. Our findings suggest the intricate connection between these ssTs and the structural adaptability of DNA 3WJs, paving the way for more precise design and engineering of nucleic acid nanosystems suitable for broad biomedical applications.


Subject(s)
Nanoparticles , Nanostructures , Nucleic Acids , Animals , Nucleic Acid Conformation , Nanostructures/chemistry , Nanotechnology , DNA/chemistry , Nanoparticles/chemistry , Mammals
3.
Mol Cancer ; 23(1): 45, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424542

ABSTRACT

BACKGROUND: In the myeloid compartment of the tumor microenvironment, CD244 signaling has been implicated in immunosuppressive phenotype of monocytes. However, the precise molecular mechanism and contribution of CD244 to tumor immunity in monocytes/macrophages remains elusive due to the co-existing lymphoid cells expressing CD244. METHODS: To directly assess the role of CD244 in tumor-associated macrophages, monocyte-lineage-specific CD244-deficient mice were generated using cre-lox recombination and challenged with B16F10 melanoma. The phenotype and function of tumor-infiltrating macrophages along with antigen-specific CD8 T cells were analyzed by flow cytometry and single cell RNA sequencing data analysis, and the molecular mechanism underlying anti-tumorigenic macrophage differentiation, antigen presentation, phagocytosis was investigated ex vivo. Finally, the clinical feasibility of CD244-negative monocytes as a therapeutic modality in melanoma was confirmed by adoptive transfer experiments. RESULTS: CD244fl/flLysMcre mice demonstrated a significant reduction in tumor volume (61% relative to that of the CD244fl/fl control group) 14 days after tumor implantation. Within tumor mass, CD244fl/flLysMcre mice also showed higher percentages of Ly6Clow macrophages, along with elevated gp100+IFN-γ+ CD8 T cells. Flow cytometry and RNA sequencing data demonstrated that ER stress resulted in increased CD244 expression on monocytes. This, in turn, impeded the generation of anti-tumorigenic Ly6Clow macrophages, phagocytosis and MHC-I antigen presentation by suppressing autophagy pathways. Combining anti-PD-L1 antibody with CD244-/- bone marrow-derived macrophages markedly improved tumor rejection compared to the anti-PD-L1 antibody alone or in combination with wild-type macrophages. Consistent with the murine data, transcriptome analysis of human melanoma tissue single-cell RNA-sequencing dataset revealed close association between CD244 and the inhibition of macrophage maturation and function. Furthermore, the presence of CD244-negative monocytes/macrophages significantly increased patient survival in primary and metastatic tumors. CONCLUSION: Our study highlights the novel role of CD244 on monocytes/macrophages in restraining anti-tumorigenic macrophage generation and tumor antigen-specific T cell response in melanoma. Importantly, our findings suggest that CD244-deficient macrophages could potentially be used as a therapeutic agent in combination with immune checkpoint inhibitors. Furthermore, CD244 expression in monocyte-lineage cells serve as a prognostic marker in cancer patients.


Subject(s)
Melanoma , Monocytes , Humans , Animals , Mice , Monocytes/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Macrophages/metabolism , CD8-Positive T-Lymphocytes , Carcinogenesis/metabolism , Tumor Microenvironment , Signaling Lymphocytic Activation Molecule Family/metabolism
4.
Curr Issues Mol Biol ; 46(5): 4580-4594, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38785546

ABSTRACT

The proto-oncogene MYC is frequently dysregulated in patients with diffuse large B-cell lymphoma (DLBCL) and plays a critical role in disease progression. To improve the clinical outcomes of patients with DLBCL, the development of strategies to target MYC is crucial. The use of medicinal plants for developing anticancer drugs has garnered considerable attention owing to their diverse mechanisms of action. In this study, 100 plant extracts of flora from the Republic of Korea were screened to search for novel agents with anti-DLBCL effects. Among them, Ajania pacifica (Nakai) K. Bremer and Humphries extract (APKH) efficiently suppressed the survival of DLBCL cells, while showing minimal toxicity toward normal murine bone marrow cells. APKH suppressed the expression of anti-apoptotic BCL2 family members, causing an imbalance between the pro-apoptotic and anti-apoptotic BCL2 members. This disrupted mitochondrial membrane potential, cytochrome c release, and pro-caspase-3 activation and eventually led to DLBCL cell death. Importantly, MYC expression was markedly downregulated by APKH and ectopic expression of MYC in DLBCL cells abolished the pro-apoptotic effects of APKH. These results demonstrate that APKH exerts anti-DLBCL effects by inhibiting MYC expression. Moreover, when combined with doxorubicin, an essential component of the CHOP regimen (cyclophosphamide, doxorubicin, vincristine, and prednisone), APKH synergistically enhanced the therapeutic effect of doxorubicin. This indicates that APKH may overcome drug resistance, which is common in patients with refractory/relapsed DLBCL. To identify compounds with anti-DLBCL activities in APKH, the chemical profile analysis of APKH was performed using UPLC-QTOF/MSe analysis and assessed for its anticancer activity. Based on the UPLC-QTOF/MSe chemical profiling, it is conceivable that APKH may serve as a novel agent targeting MYC and sensitizing drug-resistant DLBCL cells to CHOP chemotherapy. Further studies to elucidate how the compounds in APKH exert tumor-suppressive role in DLBCL are warranted.

5.
Nat Immunol ; 13(10): 947-53, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22922363

ABSTRACT

Microbiota are essential for weight gain in mouse models of diet-induced obesity (DIO), but the pathways that cause the microbiota to induce weight gain are unknown. We report that mice deficient in lymphotoxin, a key molecule in gut immunity, were resistant to DIO. Ltbr(-/-) mice had different microbial community composition compared to their heterozygous littermates, including an overgrowth of segmented filamentous bacteria (SFB). Furthermore, cecal transplantation conferred leanness to germ-free recipients. Housing Ltbr(-/-) mice with their obese siblings rescued weight gain in Ltbr(-/-) mice, demonstrating the communicability of the obese phenotype. Ltbr(-/-) mice lacked interleukin 23 (IL-23) and IL-22, which can regulate SFB. Mice deficient in these pathways also resisted DIO, demonstrating that intact mucosal immunity guides diet-induced changes to the microbiota to enable obesity.


Subject(s)
Immunity, Mucosal , Lymphotoxin beta Receptor/physiology , Lymphotoxin-alpha/physiology , Obesity , Animals , Bacteria/growth & development , Bacteria/immunology , Cecum/microbiology , Cecum/transplantation , Diet , Energy Metabolism , Germ-Free Life , Interleukin-23/deficiency , Interleukin-23/physiology , Interleukins/deficiency , Interleukins/physiology , Lymphotoxin beta Receptor/genetics , Lymphotoxin-alpha/deficiency , Lymphotoxin-alpha/genetics , Metagenome , Mice , Mice, Knockout , Obesity/etiology , Obesity/immunology , Obesity/metabolism , Weight Gain/immunology , Interleukin-22
6.
Cell Commun Signal ; 22(1): 190, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521953

ABSTRACT

BACKGROUND: Solid tumors promote tumor malignancy through interaction with the tumor microenvironment, resulting in difficulties in tumor treatment. Therefore, it is necessary to understand the communication between cells in the tumor and the surrounding microenvironment. Our previous study revealed the cancer malignancy mechanism of Bcl-w overexpressed in solid tumors, but no study was conducted on its relationship with immune cells in the tumor microenvironment. In this study, we sought to discover key factors in exosomes secreted from tumors overexpressing Bcl-w and analyze the interaction with the surrounding tumor microenvironment to identify the causes of tumor malignancy. METHODS: To analyze factors affecting the tumor microenvironment, a miRNA array was performed using exosomes derived from cancer cells overexpressing Bcl-w. The discovered miRNA, miR-6794-5p, was overexpressed and the tumorigenicity mechanism was confirmed using qRT-PCR, Western blot, invasion, wound healing, and sphere formation ability analysis. In addition, luciferase activity and Ago2-RNA immunoprecipitation assays were used to study the mechanism between miR-6794-5p and its target gene SOCS1. To confirm the interaction between macrophages and tumor-derived miR-6794-5p, co-culture was performed using conditioned media. Additionally, immunohistochemical (IHC) staining and flow cytometry were performed to analyze macrophages in the tumor tissues of experimental animals. RESULTS: MiR-6794-5p, which is highly expressed in exosomes secreted from Bcl-w-overexpressing cells, was selected, and it was shown that the overexpression of miR-6794-5p increased migratory ability, invasiveness, and stemness maintenance by suppressing the expression of the tumor suppressor SOCS1. Additionally, tumor-derived miR-6794-5p was delivered to THP-1-derived macrophages and induced M2 polarization by activating the JAK1/STAT3 pathway. Moreover, IL-10 secreted from M2 macrophages increased tumorigenicity by creating an immunosuppressive environment. The in vitro results were reconfirmed by confirming an increase in M2 macrophages and a decrease in M1 macrophages and CD8+ T cells when overexpressing miR-6794-5p in an animal model. CONCLUSIONS: In this study, we identified changes in the tumor microenvironment caused by miR-6794-5p. Our study indicates that tumor-derived miR-6794-5p promotes tumor aggressiveness by inducing an immunosuppressive environment through interaction with macrophage.


Subject(s)
Exosomes , MicroRNAs , Neoplasms , Animals , Neoplasms/genetics , Biological Assay , Biological Transport , CD8-Positive T-Lymphocytes , MicroRNAs/genetics , Tumor Microenvironment
7.
Xenotransplantation ; 31(1): e12838, 2024.
Article in English | MEDLINE | ID: mdl-38112053

ABSTRACT

BACKGROUND: αGal-deficient xenografts are protected from hyperacute rejection during xenotransplantation but are still rejected more rapidly than allografts. Despite studies showing the roles of non-Gal antibodies and αß T cells in xenograft rejection, the involvement of γδ T cells in xenograft rejection has been limitedly investigated. METHODS: Six male cynomolgus monkeys were transplanted with porcine vessel xenografts from wild-type (n = 3) or GGTA1 knockout (n = 3) pigs. We measured the proportions and T cell receptor (TCR) repertoires of blood γδ T cells before and after xenotransplant. Grafted porcine vessel-infiltrating immune cells were visualized at the end of experiments. RESULTS: Blood γδ T cells expanded and infiltrated into the graft vessel adventitia following xenotransplantation of α-Gal-deficient pig blood vessels. Pre- and post-transplant analysis of γδ TCR repertoire revealed a transition in δ chain usage post-transplantation, with the expansion of several clonotypes of δ1, δ3, or δ7 chains. Furthermore, the distinctions between pre- and post-transplant δ chain usages were more prominent than those observed for γ chain usages. CONCLUSION: γδ TCR repertoire was significantly altered by xenotransplantation, suggesting the role of γδ T cells in sustained xenoreactive immune responses.


Subject(s)
Primates , T-Lymphocyte Subsets , Animals , Male , Heterografts , Receptors, Antigen, T-Cell , Swine , Transplantation, Heterologous , Macaca fascicularis
8.
Molecules ; 29(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38202856

ABSTRACT

Paclitaxel is still used as a standard first-line treatment for ovarian cancer. Although paclitaxel is effective for many types of cancer, the emergence of chemoresistant cells represents a major challenge in chemotherapy. Our study aimed to analyze the cellular mechanism of dacomitinib, a pan-epidermal growth factor receptor (EGFR) inhibitor, which resensitized paclitaxel and induced cell cytotoxicity in paclitaxel-resistant ovarian cancer SKOV3-TR cells. We investigated the significant reduction in cell viability cotreated with dacomitinib and paclitaxel by WST-1 assay and flow cytometry analysis. Dacomitinib inhibited EGFR family proteins, including EGFR and HER2, as well as its downstream signaling proteins, including AKT, STAT3, ERK, and p38. In addition, dacomitinib inhibited the phosphorylation of Bad, and combination treatment with paclitaxel effectively suppressed the expression of Mcl-1. A 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay revealed a substantial elevation in cellular reactive oxygen species (ROS) levels in SKOV3-TR cells cotreated with dacomitinib and paclitaxel, which subsequently mediated cell cytotoxicity. Additionally, we confirmed that dacomitinib inhibits chemoresistance in paclitaxel-resistant ovarian cancer HeyA8-MDR cells. Collectively, our research indicated that dacomitinib effectively resensitized paclitaxel in SKOV3-TR cells by inhibiting EGFR signaling and elevating intracellular ROS levels.


Subject(s)
Fluoresceins , Ovarian Neoplasms , Paclitaxel , Quinazolinones , Female , Humans , Paclitaxel/pharmacology , Reactive Oxygen Species , Ovarian Neoplasms/drug therapy , Apoptosis , ErbB Receptors
9.
Curr Issues Mol Biol ; 45(4): 3359-3374, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37185744

ABSTRACT

Endometrial cancer (EC) is a gynecological neoplasm that is increasing in occurrence and mortality rates. Although endometrial cancer in the early stages shows a relatively favorable prognosis, there is an increase in cancer-related mortality rates in the advanced or recurrent endometrial carcinoma population and patients in the metastatic setting. This discrepancy has presented an opportunity for research and development of target therapies in this population. After obtaining promising results with hematologic cancers, chimeric antigen receptor (CAR)-T cell immunotherapy is gaining acceptance as a treatment for solid neoplasms. This treatment platform allows T cells to express tumor-specific CARs on the cell surface, which are administered to the patient to treat neoplastic cells. Given that CAR-T cell therapy has shown potential and clinical benefit compared to other T cell treatment platforms, additional research is required to overcome physiological limitations such as CAR-T cell depletion, immunosuppressive tumor microenvironment, and the lack of specific target molecules. Different approaches and development are ongoing to overcome these complications. This review examines CAR-T cell therapy's current use for endometrial carcinomas. We also discuss the significant adverse effects and limitations of this immunotherapeutic approach. Finally, we consolidate signal-seeking early-phase clinical trials and advancements that have shown promising results, leading to the approval of new immunotherapeutic agents for the disease.

10.
J Med Virol ; 95(7): e28894, 2023 07.
Article in English | MEDLINE | ID: mdl-37386895

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause the hyperproduction of inflammatory cytokines, which have pathological effects in patient including severe or fatal cytokine storms. To characterize the effect of SFTSV and SARS-CoV-2 infection on the production of cytokines in severe fever with thrombocytopenia syndrome (SFTS) and COVID-19 patients, we performed an analysis of cytokines in SFTS and COVID-19 patients and also investigated the role of interleukin-10 (IL-10) in vitro studies: lipopolysaccharide-induced THP-1-derived macrophages, SFTSV infection of THP-1 cells, and SARS-CoV-2 infection of THP-1 cells. In this study, we found that levels of both IL-10 and IL-6 were significantly elevated, the level of transforming growth factor-ß (TGF-ß) was significantly decreased and IL-10 was elevated earlier than IL-6 in severe and critical COVID-19 and fatal SFTS patients, and inhibition of IL-10 signaling decreased the production of IL-6 and elevated that of TGF-ß. Therefore, the hyperproduction of IL-10 and IL-6 and the low production of TGF-ß have been linked to cytokine storm-induced mortality in fatal SFTS and severe and critically ill COVID-19 patients and that IL-10 can play an important role in the host immune response to severe and critical SARS-CoV-2 and fatal SFTSV infection.


Subject(s)
COVID-19 , Severe Fever with Thrombocytopenia Syndrome , Humans , Cytokine Release Syndrome , Cytokines , Interleukin-10 , Interleukin-6 , SARS-CoV-2 , Transforming Growth Factor beta
11.
Pharmazie ; 78(1): 6-12, 2023 04 15.
Article in English | MEDLINE | ID: mdl-37138409

ABSTRACT

The aim of the present study was to investigate the potential inhibitory effects of nodakenin, a coumarin glucoside derivative from the root extract of Angelica gigas Nakai (AGN), on melanogenesis and its underlying mechanisms in B16F10 melanoma cells. The inhibitory effects of nodakenin on melanogenesis were evaluated by determining melanin contents and tyrosinase activity in α -melanocyte stimulating hormone (α-MSH)-treated B16F10 melanoma cells. The mechanisms associated with the anti-pigmentation effect of nodakenin were investigated by quantitative real-time PCR and immunoblotting analysis. Using the UVB-irradiated conditioned media culture system and UVB-irradiated co-cultivation system of HaCaT keratinocytes and B16F10 melanoma cells mimicking in vivo melanin biosynthesis, the effect of nodakenin on melanin production was evaluated. Melanin content analysis showed that nodakenin decreased cellular melanin biosynthesis in α-MSH-treated B16F10 cells. Immunoblotting revealed that CREB phosphorylation, MITF, a mastering transcription factor of melanogenesis and its downstream genes tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2 were downregulated by nodakenin in a dose-dependent manner. Interestingly, nodakenin did not affect the phosphorylation of PKA and p38 MAPK but the phosphorylation of ERK1/2 and MSK1. In addition, the inhibition of melanin accumulation by nodakenin in the UVB-irradiated conditioned media culture system and UVB-irradiated co-cultivation system of HaCaT and B16F10 cells suggests that nodakenin has potential as an anti-pigmentation activity. These data suggest that nodakenin inhibits the melanogenesis in B16F10 cells by interfering the ERK/ MSK1/CREB axis and thus preventing MITF expression.


Subject(s)
Melanoma, Experimental , Melanoma , Animals , alpha-MSH , Cell Line, Tumor , Coumarins/pharmacology , Culture Media, Conditioned/pharmacology , Glucosides/pharmacology , MAP Kinase Signaling System , Melanins , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/metabolism , Signal Transduction , Mice
12.
Gynecol Oncol ; 166(2): 236-244, 2022 08.
Article in English | MEDLINE | ID: mdl-35725657

ABSTRACT

OBJECTIVE: To compare the effects of minimally invasive surgery (MIS) and open surgery (OPS) on the risk of recurrence and mortality in patients with endometrial cancer (EC) of high-risk histology (grade 3 endometrioid adenocarcinoma, papillary serous carcinoma [PS], clear cell carcinoma [CC], and carcinosarcoma) using meta-analysis. MATERIAL AND METHODS: We systematically reviewed published studies comparing MIS and OPS in EC patients with high-risk histology until January 2022. The endpoints were recurrence and mortality rate. Study design features that may have affected participant selection, recurrence/death detection, and manuscript publication were assessed. For pooled estimates of the effect of MIS on recurrence/mortality, the random- or fixed-effects meta-analytical models were used after assessing the cross-study heterogeneity. RESULT: Nine observational studies (eight retrospective and one prospective) fulfilled our search criteria (MIS, 8877 patients; OPS, 5751 patients). The fixed-effects model-based meta-analysis indicated that MIS did not significantly increase the risk of recurrence (hazard ratio [HR], 0.86; 95% confidence interval [CI], 0.71-1.05; p = 0.13) and mortality (HR, 0.86; 95% CI, 0.79-0.93; p < 0.001) when compared with OPS. This pattern was also observed in the subgroup analyses based on the stage (early stage vs. all stage), histology (PS and CC), and MIS type (laparoscopy vs. robotic). There was no evidence of publication bias. CONCLUSION: This meta-analysis of observational studies revealed that MIS did not compromise the prognosis of EC patients with high-risk histology. Well-designed randomized controlled trials could verify the results of this uncommon but deadly tumor.


Subject(s)
Carcinoma, Endometrioid , Endometrial Neoplasms , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/pathology , Female , Humans , Minimally Invasive Surgical Procedures/methods , Observational Studies as Topic , Prospective Studies , Retrospective Studies
13.
Int J Gynecol Cancer ; 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35750352

ABSTRACT

OBJECTIVE: To assess the outcomes of retreatment using progestin for recurrence after a complete response with fertility-sparing treatment in patients with early endometrial cancer. METHODS: We retrospectively reviewed the data of patients with presumed stage IA, grade 1 endometrioid endometrial cancer who developed intra-uterine recurrence after a complete response with fertility-sparing treatment using progestin. Oncological and pregnancy outcomes were analyzed after repeated fertility-sparing treatment. Logistic and Cox regression analyses were performed to analyze the prognostic factors associated with a complete response with secondary fertility-sparing treatment and recurrence-free survival after secondary fertility-sparing treatment, respectively. RESULTS: Fifty patients with a median age of 31 years (range 23-40) underwent secondary fertility-sparing treatment. With a median secondary progestin treatment duration of 9 months (range 3-55), the complete response rate was 78% (39/50) and no patients had extra-uterine spread of disease. Among the 26 (67%) patients who attempted to conceive after complete response, 10 became pregnant (3 spontaneous abortions, 7 live births). Eighteen (46.1%) patients had a second recurrence, with a median recurrence-free survival after secondary fertility-sparing treatment of 14 months (range 3-36); 15 patients received tertiary fertility-sparing treatment and nine (60%) achieved a complete response. Polycystic ovary on ultrasound (OR 5.82, 95% CI 1.1 to 30.6, p=0.037) was associated with an increased complete response rate with secondary fertility-sparing treatment. Multivariable analysis revealed that recurrence-free survival after initial hormonal treatment >6 months (HR 0.11, 95% CI 0.02 to 0.51, p=0.005) and pregnancy after secondary fertility-sparing treatment (HR 0.27, 95% CI 0.08 to 0.98; p=0.047) were significantly associated with longer recurrence-free survival after secondary fertility-sparing treatment. CONCLUSIONS: Repeated progestin treatment was associated with a 78% response rate and it was safe in patients with intra-uterine recurrent endometrial cancer. Thus, it might help preserve fertility after first and second recurrences.

14.
Mol Ther ; 29(4): 1471-1486, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33348053

ABSTRACT

Mesenchymal stromal cells (MSCs) are considered as a promising therapeutic tool for liver fibrosis, a main feature of chronic liver disease. Because small extracellular vesicles (sEVs) harboring a variety of proteins and RNAs are known to have similar functions with their derived cells, MSC-derived sEVs carry out the regenerative capacities of MSCs. Human tonsil-derived MSCs (T-MSCs) are reported as a novel source of MSCs, but their effects on liver fibrosis remain unclear. In the present study, we investigated the effects of T-MSC-derived sEVs on liver fibrosis. The expression of profibrotic genes decreased in human primary hepatic stellate cells (pHSCs) co-cultured with T-MSCs. Treatment of T-MSC-sEVs inactivated human and mouse pHSCs. Administration of T-MSC-sEVs ameliorated hepatic injuries and fibrosis in chronically damaged liver induced by carbon tetrachloride (CCl4). miR-486-5p highly enriched in T-MSC-sEVs targeting the hedgehog receptor, smoothened (Smo), was upregulated, whereas Smo and Gli2, the hedgehog target gene, were downregulated in pHSCs and liver tissues treated with T-MSC-sEVs or miR-486-5p mimic, indicating that sEV-miR-486 inactivates HSCs by suppressing hedgehog signaling. Our results showed that T-MSCs attenuate HSC activation and liver fibrosis by delivering sEVs, and miR-486 in the sEVs inactivates hedgehog signaling, suggesting that T-MSCs and their sEVs are novel anti-fibrotic therapeutics for treating chronic liver disease.


Subject(s)
Liver Cirrhosis/therapy , MicroRNAs/genetics , Nuclear Proteins/genetics , Smoothened Receptor/genetics , Zinc Finger Protein Gli2/genetics , Animals , Carbon Tetrachloride/toxicity , Coculture Techniques , Extracellular Vesicles/genetics , Extracellular Vesicles/transplantation , Gene Expression Regulation, Developmental/genetics , Hedgehog Proteins/genetics , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Signal Transduction
15.
Nano Lett ; 21(12): 5438-5446, 2021 06 23.
Article in English | MEDLINE | ID: mdl-33784095

ABSTRACT

Overlimiting current (OLC) through electrolytes interfaced with perm-selective membranes has been extensively researched for understanding fundamental nano-electrokinetics and developing efficient engineering applications. This work studies how a network of microchannels in a nonuniform array, which mimics a natural pore configuration, can contribute to OLC. Here, micro/nanofluidic devices are fabricated with arrays of parallel microchannels with nonuniform size distributions, which are faced with a perm-selective membrane. All cases maintain the same surface and bulk conduction to allow probing of the sensitivity only by the nonuniformity. Rigorous experimental and theoretical investigation demonstrates that overlimiting conductance has a maximum value depending on the nonuniformity. Furthermore, in operando visualization reveals that the nonuniform arrays induce flow loops across the microchannel network enhancing advective transport. This recirculating flow eliminates local salt accumulations so that it can effectively suppress undesirable salt crystallization. Therefore, these results can significantly advance not only the fundamental understanding of the driving mechanism of the OLC but also the design rule of electrochemical membrane applications.


Subject(s)
Electrolytes , Membranes , Physical Phenomena
16.
Medicina (Kaunas) ; 58(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36143870

ABSTRACT

Background: Although the use of adjustable-loop suspensory fixation has increased in recent years, the influence of the shortcomings of suspensory fixation, such as the bungee-cord or windshield-wiper effects, on tunnel widening remains to be clarified. Hypothesis/Purpose: The purpose of this study was to compare adjustable-loop femoral cortical suspensory fixation and interference screw fixation in terms of tunnel widening and clinical outcomes after anterior cruciate ligament reconstruction (ACLR). We hypothesized that tunnel widening in the adjustable-loop femoral cortical suspensory fixation (AL) group would be comparable to that in the interference screw fixation (IF) group. Methods: This study evaluated patients who underwent primary ACLR at our institution between March 2015 and June 2019. The femoral and tibial tunnel diameters were measured using plain radiographs in the immediate postoperative period and 2 years after ACLR. Tunnel widening and clinical outcomes (Lysholm score, 2000 International Knee Documentation Committee subjective score, and Tegner activity level) were compared between the two groups. Results: There were 48 patients (mean age, 29.8 ± 12.0 years) in the AL group and 44 patients (mean age, 26.0 ± 9.5 years) in the IF group. Tunnel widening was significantly greater in the AL group than that in the IF group at the tibia anteroposterior (AP) middle (2.03 mm vs. 1.32 mm, p = 0.017), tibia AP distal (1.52 mm vs. 0.84 mm, p = 0.012), tibia lateral proximal (1.85 mm vs. 1.00 mm, p = 0.001), tibia lateral middle (2.36 mm vs. 1.03 mm, p < 0.001), and tibia lateral distal (2.34 mm vs. 0.85 mm, p < 0.001) levels. There were no significant differences between the two groups with respect to femoral tunnel widening and clinical outcomes. Conclusions: Tibial tunnel widening was significantly greater in the AL group than in the IF group at 2 years after primary ACLR. However, the clinical outcomes in the two groups were comparable at 2 years.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Adolescent , Adult , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction/methods , Bone Screws , Femur/surgery , Humans , Knee Joint/surgery , Tibia/surgery , Young Adult
17.
Infect Immun ; 89(4)2021 03 17.
Article in English | MEDLINE | ID: mdl-33468581

ABSTRACT

Thymosin beta-4 (Tß4) is an actin-sequestering peptide that plays important roles in regeneration and remodeling of injured tissues. However, its function in a naturally occurring pathogenic bacterial infection model has remained elusive. We adopted Tß4-overexpressing transgenic (Tg) mice to investigate the role of Tß4 in acute pulmonary infection and systemic sepsis caused by Legionella pneumophila Upon infection, Tß4-Tg mice demonstrated significantly lower bacterial loads in the lung, less hyaline membranes and necrotic abscess, with lower interstitial infiltration of neutrophils, CD4+, and CD8+ T cells. Bronchoalveolar lavage fluid of Tß4-Tg mice possessed higher bactericidal activity against exogenously added L. pneumophila, suggesting that constitutive expression of Tß4 could efficiently control L. pneumophila Furthermore, qPCR analysis of lung homogenates demonstrated significant reduction of interleukin 1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α), which primarily originate from lung macrophages, in Tß4-Tg mice after pulmonary infection. Upon L. pneumophila challenge of bone marrow-derived macrophages (BMDM) in vitro, secretion of IL-1ß and TNF-α proteins was also reduced in Tß4-Tg macrophages, without affecting their survival. The anti-inflammatory effects of BMDM in Tß4-Tg mice on each cytokine were affected when triggering with tlr2, tlr4, tlr5, or tlr9 ligands, suggesting that anti-inflammatory effects of Tß4 are likely mediated by the reduced activation of Toll-like receptors (TLR). Finally, Tß4-Tg mice in a systemic sepsis model were protected from L. pneumophila-induced lethality compared to wild-type controls. Therefore, Tß4 confers effective resistance against L. pneumophila via two pathways, a bactericidal and an anti-inflammatory pathway, which can be harnessed to treat acute pneumonia and septic conditions caused by L. pneumophila in humans.


Subject(s)
Disease Resistance/genetics , Ectopic Gene Expression , Legionella pneumophila/physiology , Legionnaires' Disease/genetics , Legionnaires' Disease/microbiology , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/microbiology , Thymosin/genetics , Animals , Cytokines/metabolism , Disease Models, Animal , Host-Pathogen Interactions/genetics , Humans , Immunohistochemistry , Immunophenotyping , Legionnaires' Disease/pathology , Ligands , Male , Mice , Mice, Transgenic , Pneumonia, Bacterial/pathology , Sepsis/genetics , Sepsis/microbiology , Sepsis/pathology , Toll-Like Receptors/metabolism
18.
J Cell Physiol ; 236(7): 4902-4912, 2021 07.
Article in English | MEDLINE | ID: mdl-33283879

ABSTRACT

Endoplasmic reticulum (ER) stress plays a causative role in the development of nonalcoholic fatty liver disease (NAFLD). Kynurenic acid (KA) is a tryptophan metabolite that has been shown to exert anti-inflammatory effects in macrophages and endothelial cells. However, the role of KA in ER stress-associated development of NAFLD has not been fully explored. In the current study, we observed decreased KA levels in the serum of obese subjects. Treated hepatocytes with KA attenuated palmitate-induced lipid accumulation and downregulated lipogenesis-associated genes as well as ER stress markers in a dose-dependent manner. Furthermore, KA augmented AMP-activated protein kinase (AMPK) phosphorylation, oxygen-regulated protein 150 (ORP150) expression, and autophagy markers. The small interfering RNA-mediated suppression of AMPK and ORP150, or 3-methyladenine also abrogated the effects of KA on ER stress and lipid accumulation in hepatocytes. In accordance with in vitro observations, KA administration to mice fed a high-fat diet ameliorated hepatic lipid accumulation and decreased the expression of lipogenic genes as well as ER stress. Moreover, KA treatment increased hepatic AMPK phosphorylation, ORP150 expression, and autophagy related markers in mouse livers. Knockdown of AMPK using in vivo transfection mitigated the effects of KA on hepatic steatosis and ER stress as well as autophagy and ORP150 expression. These results suggest that KA ameliorates hepatic steatosis via the AMPK/autophagy- and AMPK/ORP150-mediated suppression of ER stress. In sum, KA might be used as a promising therapeutic agent for treatment of NAFLD.


Subject(s)
Autophagy/physiology , HSP70 Heat-Shock Proteins/metabolism , Kynurenic Acid/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Protein Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Adult , Animals , Cells, Cultured , Disease Models, Animal , Endoplasmic Reticulum Stress/physiology , Female , HSP70 Heat-Shock Proteins/genetics , Hepatocytes/metabolism , Humans , Kynurenic Acid/blood , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/prevention & control , Protein Kinases/genetics , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction
19.
Pflugers Arch ; 473(4): 659-671, 2021 04.
Article in English | MEDLINE | ID: mdl-33586023

ABSTRACT

Innate-like CD5+ B1a cells localized in serous cavities are activated by innate stimuli, such as lipopolysaccharide (LPS), leading to T cell-independent antibody responses. Although ion channels play crucial roles in the homeostasis and activation of immune cells, the electrophysiological properties of B1a cells have not been investigated to date. Previously, in the mouse B cell lymphoma cells, we found that the voltage-independent two-pore-domain potassium (K2P) channels generate a negative membrane potential and drive Ca2+ influx. Here, we newly compared the expression and activities of K2P channels in mouse splenic follicular B (FoB), marginal zone B (MZB), and peritoneal B1a cells. Next-generation sequencing analysis showed higher levels of transcripts for TREK-2 and TWIK-2 in B1a cells than those in FoB or MZB cells. Electrophysiological analysis, using patch clamp technique, revealed higher activity of TREK-2 with the characteristic large unitary conductance (~ 250 pS) in B1a than that in FoB or MZB cells. TREK-2 activity was further increased by LPS treatment (>2 h), which was more prominent in B1a than that in MZB or FoB cells. The cytosolic Ca2+ concentration of B cells was decreased by high-K+-induced depolarization (ΔRKCl (%)), suggesting the basal Ca2+ influx to be driven by negative membrane potential. The LPS treatment significantly increased the ΔRKCl (%) in B1a, though not in FoB and MZB cells. Our study was the first to compare the K2P channels in mouse primary B cell subsets, elucidating the functional upregulation of TREK-2 and augmentation of Ca2+ influx by the stimulation of Toll-like receptor 4 in B1a cells.


Subject(s)
Action Potentials , B-Lymphocytes/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Spleen/cytology , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/physiology , CD5 Antigens/genetics , CD5 Antigens/metabolism , Calcium/metabolism , Cells, Cultured , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Peritoneum/cytology , Potassium Channels, Tandem Pore Domain/genetics , Up-Regulation
20.
Curr Issues Mol Biol ; 43(1): 226-239, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34071865

ABSTRACT

Due to the highly immunogenic nature of renal cell carcinoma (RCC), the tumor microenvironment (TME) is enriched with various innate and adaptive immune subsets. In particular, gamma-delta (γδ) T cells can act as potent attractive mediators of adoptive cell transfer immunotherapy because of their unique properties such as non-reliance on major histocompatibility complex expression, their ability to infiltrate human tumors and recognize tumor antigens, relative insensitivity to immune checkpoint molecules, and broad tumor cytotoxicity. Therefore, it is now critical to better characterize human γδ T-cell subsets and their mechanisms in RCCs, especially the stage of differentiation. In this study, we aimed to identify γδ T cells that might have adaptive responses against RCC progression. We characterized γδ T cells in peripheral blood and tumor-infiltrating lymphocytes (TILs) in freshly resected tumor specimens from 20 RCC patients. Furthermore, we performed a gene set enrichment analysis on RNA-sequencing data from The Cancer Genome Atlas (TCGA) derived from normal kidneys and RCC tumors to ascertain the association between γδ T-cell infiltration and anti-cancer immune activity. Notably, RCC-infiltrating CD3low Vγ9Vδ1 T cells with a terminally differentiated effector memory phenotype with up-regulated activation/exhaustion molecules were newly detected as predominant TILs, and the cytotoxic activity of these cells against RCC was confirmed in vitro. In an additional analysis of the TCGA RCC dataset, γδ T-cell enrichment scores correlated strongly with those for CTLs, Th1 cells, "exhausted" T cells, and M1 macrophages, suggesting active involvement of γδ T cells in anti-tumor rather than pro-tumor activity, and Vδ1 cells were more abundant than Vδ2 or Vδ3 cells in RCC tumor samples. Thus, we posit that Vγ9Vδ1 T cells may represent an excellent candidate for adoptive immunotherapy in RCC patients with a high risk of relapse after surgery.


Subject(s)
CD3 Complex/immunology , Carcinoma, Renal Cell/immunology , Kidney Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , CD3 Complex/genetics , CD3 Complex/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cytokines/immunology , Cytokines/metabolism , Female , Flow Cytometry/methods , Gene Expression Regulation, Neoplastic/immunology , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , RNA-Seq/methods , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL