Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Plant Cell ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869214

ABSTRACT

Anthocyanins play critical roles in protecting plant tissues against diverse stresses. The complicated regulatory networks induced by various environmental factors modulate the homeostatic level of anthocyanins. Here, we show that anthocyanin accumulation is induced by brassinosteroids (BRs) in Arabidopsis (Arabidopsis thaliana) shoots and shed light on the underlying regulatory mechanism. We observed that anthocyanin levels are altered considerably in BR-related mutants, and BRs induce anthocyanin accumulation by up-regulating the expression of anthocyanin biosynthetic genes. Our genetic analysis indicated that BRASSINAZOLE RESISTANT 1 (BZR1) and PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) are essential for BR-induced anthocyanin accumulation. The BR-responsive transcription factor BZR1 directly binds to the PAP1 promoter, regulating its expression. In addition, we found that intense anthocyanin accumulation caused by the pap1-D dominant mutation is significantly reduced in BR mutants, implying that BR activity is required for PAP1 function after PAP1 transcription. Moreover, we demonstrated that BZR1 physically interacts with PAP1 to cooperatively regulate the expression of PAP1 target genes, such as TRANSPARENT TESTA 8 (TT8), DIHYDROFLAVONOL 4-REDUCTASE (DFR), and LEUKOANTHOCYANIDIN DIOXYGENASE (LDOX). Our findings indicate that BZR1 functions as an integral component of the PAP1-containing transcription factor complex, contributing to increased anthocyanin biosynthesis. Notably, we also show that functional interaction of BZR1 with PAP1 is required for anthocyanin accumulation induced by low nitrogen stress. Taken together, our results demonstrate that BR-regulated BZR1 promotes anthocyanin biosynthesis through cooperative interaction with PAP1 of the MBW complex.

2.
Plant Cell ; 35(3): 975-993, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36660928

ABSTRACT

Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.


Subject(s)
Protein Kinases , Proteomics , Signal Transduction , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Biotin/chemistry , Biotinylation , Brassinosteroids/metabolism , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Proteomics/methods , Signal Transduction/physiology
3.
Plant J ; 117(3): 747-765, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37926922

ABSTRACT

Brassinazole Resistant 1 (BZR1) and bri1 EMS Suppressor 1 (BES1) are key transcription factors that mediate brassinosteroid (BR)-responsive gene expression in Arabidopsis. The BZR1/BES1 family is composed of BZR1, BES1, and four BES1/BZR1 homologs (BEH1-BEH4). However, little is known about whether BEHs are regulated by BR signaling in the same way as BZR1 and BES1. We comparatively analyzed the functional characteristics of six BZR1/BES1 family members and their regulatory mechanisms in BR signaling using genetic and biochemical analyses. We also compared their subcellular localizations regulated by the phosphorylation status, interaction with GSK3-like kinases, and heterodimeric combination. We found that all BZR1/BES1 family members restored the phenotypic defects of bri1-5 by their overexpression. Unexpectedly, BEH2-overexpressing plants showed the most distinct phenotype with enhanced BR responses. RNA-Seq analysis indicated that overexpression of both BZR1 and BEH2 regulates BR-responsive gene expression, but BEH2 has a much greater proportion of BR-independent gene expression than BZR1. Unlike BZR1 and BES1, the BR-regulated subcellular translocation of the four BEHs was not tightly correlated with their phosphorylation status. Notably, BEH1 and BEH2 are predominantly localized in the nucleus, which induces the nuclear accumulation of other BZR1/BES1 family proteins through heterodimerization. Altogether, our comparative analyses suggest that BEH1 and BEH2 play an important role in the functional interaction between BZR1/BES1 family transcription factors.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Triazoles , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
J Exp Bot ; 73(5): 1415-1428, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34718527

ABSTRACT

Unlike the indispensable function of the steroid hormone brassinosteroid (BR) in regulating plant growth and development, the metabolism of secondary metabolites regulated by BR is not well known. Here we show that BR reduces carotenoid accumulation in Arabidopsis seedlings. BR-deficient or BR-insensitive mutants accumulated higher content of carotenoids than wild-type plants, whereas BR treatment reduced carotenoid content. We demonstrated that BR transcriptionally suppresses 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE (HPPD) expression involved in carotenogenesis via plastoquinone production. We found that the expression of HPPD displays an oscillation pattern that is expressed more strongly in dark than in light conditions. Moreover, BR appeared to inhibit HPPD expression more strongly in darkness than in light, leading to suppression of a diurnal oscillation of HPPD expression. BR-responsive transcription factor BRASSINAZOLE RESISTANT 1 (BZR1) directly bound to the promoter of HPPD, and HPPD suppression by BR was increased in the bzr1-1D gain-of-function mutation. Interestingly, dark-induced HPPD expression did not cause carotenoid accumulation, due to down-regulation of other carotenoid biosynthetic genes in the dark. Our results suggest that BR regulates different physiological responses in dark and light through inhibition of HPPD expression.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Arabidopsis Proteins , Arabidopsis , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Carotenoids/metabolism , Gene Expression Regulation, Plant
5.
Plant Cell ; 31(4): 791-808, 2019 04.
Article in English | MEDLINE | ID: mdl-30814258

ABSTRACT

Brassinosteroid (BR) regulates a wide range of physiological responses through the activation of BRASSINAZOLE RESISTANT1 (BZR1), whose activity is tightly controlled by its phosphorylation status and degradation. Although BZR1 appears to be degraded in distinct ways in response to different hormonal or environmental cues, little is known about how BR signaling regulates its degradation. Here we show that the BR-regulated U-box protein PUB40 mediates the proteasomal degradation of BZR1 in a root-specific manner in Arabidopsis (Arabidopsis thaliana). BZR1 levels were strongly reduced by plant U-box40 (PUB40) overexpression, whereas the pub39 pub40 pub41 mutant accumulated much more BZR1 than wild type in roots. The bzr1-1D gain-of-function mutation reduced the interaction with PUB40, which suppressed PUB40-mediated BZR1 degradation in roots. The cell layer-specific expression of PUB40 in roots helps induce selective BZR1 accumulation in the epidermal layer. Both BR treatment and loss-of-function of PUB40 expanded BZR1 accumulation to most cell layers. In addition, BZR1 accumulation increased the resistance of pub39 pub40 pub41 to low inorganic phosphate availability, as observed in bzr1-1D BRASSINOSTEROID-INSENSITIVE2-induced phosphorylation of PUB40, which mainly occurs in roots, gives rise to BZR1 degradation through enhanced binding of PUB40 to BZR1 and PUB40's stability. Our results suggest a molecular mechanism of root-specific BZR1 degradation regulated by BR signaling.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Brassinosteroids/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
6.
Nature ; 532(7600): 480-3, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27121841

ABSTRACT

The regulation of water content in polymeric membranes is important in a number of applications, such as reverse electrodialysis and proton-exchange fuel-cell membranes. External thermal and water management systems add both mass and size to systems, and so intrinsic mechanisms of retaining water and maintaining ionic transport in such membranes are particularly important for applications where small system size is important. For example, in proton-exchange membrane fuel cells, where water retention in the membrane is crucial for efficient transport of hydrated ions, by operating the cells at higher temperatures without external humidification, the membrane is self-humidified with water generated by electrochemical reactions. Here we report an alternative solution that does not rely on external regulation of water supply or high temperatures. Water content in hydrocarbon polymer membranes is regulated through nanometre-scale cracks ('nanocracks') in a hydrophobic surface coating. These cracks work as nanoscale valves to retard water desorption and to maintain ion conductivity in the membrane on dehumidification. Hydrocarbon fuel-cell membranes with surface nanocrack coatings operated at intermediate temperatures show improved electrochemical performance, and coated reverse-electrodialysis membranes show enhanced ionic selectivity with low bulk resistance.


Subject(s)
Membranes, Artificial , Nanotechnology , Polymers/chemistry , Water/analysis , Biomimetic Materials/chemistry , Biomimetics , Cactaceae/metabolism , Desiccation , Dialysis , Electrochemistry , Humidity , Hydrophobic and Hydrophilic Interactions , Plant Stomata/metabolism , Protons , Surface Properties , Temperature
7.
Plant Cell ; 30(8): 1848-1863, 2018 08.
Article in English | MEDLINE | ID: mdl-30065046

ABSTRACT

Crosstalk between signaling pathways is an important feature of complex regulatory networks. How signal crosstalk circuits are tailored to suit different needs of various cell types remains a mystery in biology. Brassinosteroid (BR) and abscisic acid (ABA) antagonistically regulate many aspects of plant growth and development through direct interactions between components of the two signaling pathways. Here, we show that BR and ABA synergistically regulate stomatal closure through crosstalk between the BR-activated kinase CDG1-LIKE1 (CDL1) and the OPEN STOMATA1 (OST1) of the ABA signaling pathway in Arabidopsis thaliana We demonstrate that the cdl1 mutant displayed reduced sensitivity to ABA in a stomatal closure assay, similar to the ost1 mutant. CDL1 and the BR receptor BR-INSENSITIVE1, but not other downstream components of the BR signaling pathway, were required for BR regulation of stomatal movement. Genetic and biochemical experiments demonstrated that CDL1 activates OST1 by phosphorylating it on residue Ser-7. BR increased phosphorylation of OST1, and the BR-induced OST1 activation was abolished in cdl1 mutants. Moreover, we found that ABA activates CDL1 in an OST1-dependent manner. Taken together, our findings illustrate a cell-type-specific BR signaling branch through which BR acts synergistically with ABA in regulating stomatal closure.


Subject(s)
Abscisic Acid/pharmacology , Brassinosteroids/pharmacology , Plant Stomata/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Phosphorylation/drug effects , Signal Transduction/drug effects
8.
Plant J ; 99(3): 426-438, 2019 08.
Article in English | MEDLINE | ID: mdl-30920691

ABSTRACT

Oryza sativa BRASSINAZOLE RESISTANT 1 (OsBZR1) is the closest rice homolog of the Arabidopsis BZR1 and bri1-EMS-SUPPRESSOR 1 (BES1)/BZR2 transcription factors. OsBZR1 plays a central role in the rice brassinosteroid signaling pathway. Despite its functional importance, the control mechanism by which the cellular stability of OsBZR1 is regulated has not yet been fully elucidated. Here, we report that a rice U-box E3 ubiquitin (Ub) ligase OsPUB24 acts as a negative regulator in the BR signaling pathway via the 26S proteasome-dependent degradation of OsBZR1. The ospub24 T-DNA knock-out mutant and Ubi:RNAi-OsPUB24 knock-down rice plants displayed enhanced seedling growth, increased lamina joint bending, and hypersensitivity to brassinolide (BL). The expressions of the BR biosynthetic genes suppressed by BR in a negative feedback loop were lower in the mutant progeny than in the wild-type rice plants, which indicated increased BR responses in the mutant line. OsPUB24 ubiquitinated OsBZR1, resulting in the proteasomal degradation of OsBZR1. In addition, the stability of OsPUB24 was downregulated by BL and bikinin, an inhibitor of Oryza sativa Shaggy/GSK3-like kinase 22 (OsSK22). OsSK22, the homolog of Arabidopsis BRASSINOSTEROID INSENSITIVE 2 (BIN2) protein kinase, phosphorylated OsPUB24 and elevated the cellular stability of OsPUB24. Our findings suggest that OsPUB24 participates in OsBZR1 turnover, and that the regulatory networks of OsPUB24, OsSK22 and OsBZR1 are crucial for fine-tuning the BR response in rice.


Subject(s)
Brassinosteroids/pharmacology , DNA-Binding Proteins/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Steroids, Heterocyclic/pharmacology , Ubiquitin-Protein Ligases/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Oryza/genetics , Phosphorylation/drug effects , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plants, Genetically Modified , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Interference , Seedlings/genetics , Seedlings/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Ubiquitin-Protein Ligases/genetics
9.
Anal Chem ; 91(15): 10064-10072, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31286772

ABSTRACT

Although low-molecular-weight (LMW) biothiols function as a disease indicator in plasma, rapidly and effectively analyzing them remains challenging in the extracellular oxidative environment due to technical difficulties. Here, we report a newly designed, affinity pulldown platform using a Bacillus subtilis-derived organic hydroperoxide resistance regulatory (OhrRBS) protein and its operator dsDNA for rapid and cost-effective analyses of plasma LMW biothiols. In the presence of organic hydroperoxide, LMW biothiols triggered the rapid dissociation of FAM-labeled dsDNA from FLAG-tagged OhrRBS via S-thiolation of OhrRBS on anti-FLAG antibody-coated beads, which led to a strong increase of fluorescence intensity in the supernatant after pulldown. This method was easily extended by using a reducing agent to detect free and total LMW biothiols simultaneously in mouse plasma. Unlike free plasma LMW biothiols, total plasma LMW biothiols were more elevated in ΔLDLR mice than those in normal mice. Owing to the rapid dissociation of OhrR/dsDNA complexes in response to LMW biothiols, this pulldown platform is immediately suitable for monitoring rapid redox changes in plasma LMW biothiols as well as studying oxidative stress and diseases in blood.


Subject(s)
Bacterial Proteins/chemistry , DNA/chemistry , Spectrometry, Fluorescence/methods , Sulfhydryl Compounds/blood , Animals , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Benzene Derivatives/chemistry , Cysteine/blood , Cysteine/chemistry , DNA/metabolism , Glutathione/blood , Glutathione/chemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Weight , Oxidation-Reduction , Receptors, LDL/deficiency , Receptors, LDL/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sulfhydryl Compounds/chemistry
11.
Mol Cell ; 43(4): 561-71, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21855796

ABSTRACT

The brassinosteroid (BR) signaling pathway includes two receptor-like kinases (BRI1 and BAK1), a plasma membrane-associated kinase (BSK1), two phosphatases (BSU1 and PP2A), a GSK3-like kinase (BIN2), and two homologous transcription factors (BZR1 and BES1/BZR2). But the mechanisms of signal relay are not fully understood. Here, we show that a receptor-like cytoplasmic kinase named CDG1 mediates signal transduction from BRI1 to BSU1. Transgenic experiments confirm that CDG1 and its homolog CDL1 positively regulate BR signaling and plant growth. Mass spectrometry analysis identified BRI1 phosphorylation sites in CDG1 and CDG1 phosphorylation sites in BSU1. Mutations of these phosphorylation sites compromised the BR signaling functions. The results demonstrate that BRI1 phosphorylates S234 to activate CDG1 kinase, and CDG1 in turn phosphorylates S764 to activate BSU1, which inactivates BIN2 by dephosphorylating Y200 of BIN2. This study thus demonstrates a complete phosphorylation/dephosphorylation cascade linking a steroid-activated receptor kinase to a GSK3-like kinase in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Arabidopsis/enzymology , Phosphoprotein Phosphatases/metabolism , Protein Kinases/metabolism , Protein Kinases/physiology , Signal Transduction , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Cell Membrane/metabolism , Phosphoprotein Phosphatases/chemistry , Phosphorylation , Protein Interaction Mapping , Protein Kinases/genetics , Two-Hybrid System Techniques
12.
J Exp Bot ; 69(8): 1873-1886, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29432595

ABSTRACT

DWARF1 (DWF1) is a sterol C-24 reductase that catalyses the conversion of 24-methylenecholesterol (24-MCHR) to campesterol (CR) in Arabidopsis. A loss-of-function mutant, dwf1, showed similar phenotypic abnormalities to brassinosteroid (BR)-deficient mutants. These abnormalities were reversed in the wild-type phenotype by exogenous application of castasterone (CS) and brassinolide (BL), but not dolichosterone (DS). Accumulation of DS and decreased CS were found in quantitative analysis of endogenous BRs in dwf1. The enzyme solution prepared from dwf1 was unable to convert 6-deoxoDS to 6-deoxoCS and DS to CS, as seen in either wild-type or 35S:DWF1 transgenic plants. This suggests that DWF1 has enzyme activity not only for a sterol C-24 reductase, but also for a BR C-24 reductase that catalyses C-24 reduction of 6-deoxoDS to 6-deoxoCS and of DS to CS in Arabidopsis. Overexpression of DWF1 in a BR-deficient mutant (det2 35S:DWF1) clearly rescued abnormalities found in det2, indicating that DWF1 functions in biosynthesis of active BRs in Arabidopsis. Expression of DWF1 is down-regulated by application of CS and BL and in a BR-dominant mutant, bes1-D. E-boxes in the putative promoter region of DWF1 directly bind to a BR transcription factor, BES1, implying that DWF1 expression is feedback-regulated by BR signaling via BES1. Overall, biosynthesis of 24-methylene BR is an alternative route for generating CS, which is mediated and regulated by DWF1 in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Brassinosteroids/biosynthesis , Gene Expression Regulation, Plant , Oxidoreductases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Biosynthetic Pathways , Brassinosteroids/chemistry , Oxidoreductases/genetics , Steroids, Heterocyclic/chemistry
13.
Nature ; 482(7385): 419-22, 2012 Feb 05.
Article in English | MEDLINE | ID: mdl-22307275

ABSTRACT

Plants must coordinate the regulation of biochemistry and anatomy to optimize photosynthesis and water-use efficiency. The formation of stomata, epidermal pores that facilitate gas exchange, is highly coordinated with other aspects of photosynthetic development. The signalling pathways controlling stomata development are not fully understood, although mitogen-activated protein kinase (MAPK) signalling is known to have key roles. Here we demonstrate in Arabidopsis that brassinosteroid regulates stomatal development by activating the MAPK kinase kinase (MAPKKK) YDA (also known as YODA). Genetic analyses indicate that receptor kinase-mediated brassinosteroid signalling inhibits stomatal development through the glycogen synthase kinase 3 (GSK3)-like kinase BIN2, and BIN2 acts upstream of YDA but downstream of the ERECTA family of receptor kinases. Complementary in vitro and in vivo assays show that BIN2 phosphorylates YDA to inhibit YDA phosphorylation of its substrate MKK4, and that activities of downstream MAPKs are reduced in brassinosteroid-deficient mutants but increased by treatment with either brassinosteroid or GSK3-kinase inhibitor. Our results indicate that brassinosteroid inhibits stomatal development by alleviating GSK3-mediated inhibition of this MAPK module, providing two key links; that of a plant MAPKKK to its upstream regulators and of brassinosteroid to a specific developmental output.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/enzymology , Brassinosteroids/pharmacology , Glycogen Synthase Kinase 3/metabolism , MAP Kinase Signaling System/drug effects , Plant Stomata/drug effects , Plant Stomata/growth & development , Protein Kinases/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/genetics , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation/drug effects , Plant Stomata/enzymology , Plant Stomata/genetics , Plants, Genetically Modified , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Nicotiana
14.
Nature ; 474(7352): 472-6, 2011 Jun 12.
Article in English | MEDLINE | ID: mdl-21666666

ABSTRACT

Brassinosteroids are essential phytohormones that have crucial roles in plant growth and development. Perception of brassinosteroids requires an active complex of BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED KINASE 1 (BAK1). Recognized by the extracellular leucine-rich repeat (LRR) domain of BRI1, brassinosteroids induce a phosphorylation-mediated cascade to regulate gene expression. Here we present the crystal structures of BRI1(LRR) in free and brassinolide-bound forms. BRI1(LRR) exists as a monomer in crystals and solution independent of brassinolide. It comprises a helical solenoid structure that accommodates a separate insertion domain at its concave surface. Sandwiched between them, brassinolide binds to a hydrophobicity-dominating surface groove on BRI1(LRR). Brassinolide recognition by BRI1(LRR) is through an induced-fit mechanism involving stabilization of two interdomain loops that creates a pronounced non-polar surface groove for the hormone binding. Together, our results define the molecular mechanisms by which BRI1 recognizes brassinosteroids and provide insight into brassinosteroid-induced BRI1 activation.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/chemistry , Arabidopsis/metabolism , Cholestanols/metabolism , Protein Kinases/chemistry , Protein Kinases/metabolism , Steroids, Heterocyclic/metabolism , Binding Sites , Brassinosteroids , Cholestanols/chemistry , Crystallography, X-Ray , Enzyme Activation , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Binding , Protein Folding , Protein Structure, Tertiary , Steroids, Heterocyclic/chemistry , Structure-Activity Relationship , Substrate Specificity
15.
Anal Chem ; 87(2): 1257-65, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25521387

ABSTRACT

We report a rapid colorimetric assay to detect protein phosphatase (PP) activity based on the controlled assembly and disassembly of gold nanoparticles (AuNPs) via Zn(II)-specific coordination in the presence of His6-tagged phosphopeptides. Among divalent metal ions including Ni(II), Cu(II), Co(II), Mg(II), Mn(II), and Zn(II), only Zn(II) triggered a strong association between phosphopeptides with hexahistidine at a single end and nitrilotriacetic acid (NTA)-modified AuNPs (21.3 nm in core diameter), leading to the self-assembly of AuNPs and consequently changes in color of the AuNP solution. In contrast, unphosphorylated peptides and His6-deficient phosphopeptides did not change the color of the AuNP solution. As a result, protein phosphatase 1 (PP1) activity and its inhibition were easily quantified with high sensitivity by determining the extinction ratio (E520/E700) of colloidal AuNPs. Most importantly, this method was capable of detecting protein phosphatase 2A (PP2A) activity in immunoprecipitated plant extracts. Because PPs play pivotal roles in mediating diverse signal transduction pathways as primary effectors of protein dephosphorylation, we anticipate that our method will be applied as a rapid format method to analyze the activities of various PPs and their inhibition.


Subject(s)
Arabidopsis/enzymology , Enzyme Assays/methods , Phosphopeptides/metabolism , Phosphoprotein Phosphatases/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Colorimetry/economics , Colorimetry/methods , Enzyme Assays/economics , Gold/chemistry , Histidine/chemistry , Histidine/metabolism , Metal Nanoparticles/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Phosphopeptides/chemistry
16.
Physiol Plant ; 153(1): 58-67, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24939035

ABSTRACT

An in vitro enzyme assay using radioisotope-labeled (3) H-castasterone ((3) H-CS) or (32) P-ATP showed that CS can be phosphorylated by ATP in Arabidopsis and tomato plants. Gas chromatography-mass spectrometry (GC-MS) analysis using non-isotope-labeled CS and ATP revealed that the phosphorylation of CS occurs at the side chain, most likely at the C-23 hydroxyl. The polar fractions than free brassinosteroids (BRs) obtained from extracts of Arabidopsis and tomato showed almost no BRs activity in a rice lamina inclination bioassay. However, the fractions showed increased bioactivity after treatment with wheat germ acidic phosphatase (WGAP). Additionally, CS was identified from the hydrolysate by WGAP using GC-MS analysis in both plants. In contrast, the polar fractions obtained from BR-deficient mutants, Arabidopsis cyp85a2 and tomato d(x) , did not show an increase in biological activity with WGAP treatment, and no free BRs, including CS, were detected in the hydrolysate. This suggests that CS phosphate is a naturally occurring biologically inactive conjugate that is generated when CS is normally synthesized in Arabidopsis and tomato plants. Taken together, these results suggest that phosphorylation of CS is an important conjugation process for the maintenance of the homeostatic level of an active BR and thus the regulation of the growth and development of plants.


Subject(s)
Arabidopsis/metabolism , Brassinosteroids/metabolism , Cholestanols/metabolism , Solanum lycopersicum/metabolism , Arabidopsis/growth & development , Brassinosteroids/chemistry , Cholestanols/chemistry , Gas Chromatography-Mass Spectrometry , Solanum lycopersicum/growth & development , Oryza/metabolism , Phosphorylation
17.
Sensors (Basel) ; 15(8): 17977-89, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26213934

ABSTRACT

We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Nanoparticles/chemistry , Protein Kinases/metabolism , Quantum Dots/chemistry , Zinc/chemistry , Adenosine Triphosphate/pharmacology , Enzyme Assays , Magnesium/pharmacology , Peptides/metabolism , Phosphorylation/drug effects , Substrate Specificity/drug effects , Time Factors
18.
Dev Cell ; 13(2): 177-89, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17681130

ABSTRACT

Brassinosteroids (BRs) are essential hormones for plant growth and development. BRs regulate gene expression by inducing dephosphorylation of two key transcription factors, BZR1 and BZR2/BES1, through a signal transduction pathway that involves cell-surface receptors (BRI1 and BAK1) and a GSK3 kinase (BIN2). How BR-regulated phosphorylation controls the activities of BZR1/BZR2 is not fully understood. Here, we show that BIN2-catalyzed phosphorylation of BZR1/BZR2 not only inhibits DNA binding, but also promotes binding to the 14-3-3 proteins. Mutations of a BIN2-phosphorylation site in BZR1 abolish 14-3-3 binding and lead to increased nuclear localization of BZR1 protein and enhanced BR responses in transgenic plants. Further, BR deficiency increases cytoplasmic localization, and BR treatment induces rapid nuclear localization of BZR1/BZR2. Thus, 14-3-3 binding is required for efficient inhibition of phosphorylated BR transcription factors, largely through cytoplasmic retention. This study demonstrates that multiple mechanisms are required for BR regulation of gene expression and plant growth.


Subject(s)
14-3-3 Proteins/metabolism , Arabidopsis/metabolism , Signal Transduction , Steroids, Heterocyclic/metabolism , Amino Acid Sequence , Arabidopsis/drug effects , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Cell Nucleus/drug effects , Cell Nucleus/metabolism , DNA, Plant/metabolism , DNA-Binding Proteins , Down-Regulation/drug effects , Models, Biological , Molecular Sequence Data , Mutation/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation/drug effects , Plant Leaves/cytology , Plant Leaves/drug effects , Protein Binding/drug effects , Protein Kinases/metabolism , Protein Transport/drug effects , Signal Transduction/drug effects , Steroids, Heterocyclic/pharmacology
19.
J Exp Bot ; 63(5): 1823-33, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22170941

ABSTRACT

A metabolic study revealed that 28-norcastasterone in Arabidopsis is synthesized from cholesterol via the late C-6 oxidation pathway. On the other hand, the early C-6 oxidation pathway was found to be interrupted because cholestanol is converted to 6-oxocholestanol, but further metabolism to 28-norcathasterone was not observed. The 6-oxoBRs were found to have been produced from the respective 6-deoxoBRs administered to the enzyme solution, thus indicating that these 6-oxoBRs are supplied from the late C-6 oxidation pathway. Heterologously expressed CYP85A1 and CYP85A2 in yeast catalysed this C-6 oxidation, with CYP85A2 being much more efficient than CYP85A1. Abnormal growth of det2 and dwf4 was restored via the application of 28-norcastasterone and closer precursors. Furthermore, det2 and dwf4 could not convert cholesterol to cholestanol and cholestanol to 6-deoxo-28-norcathasterone, respectively. It is, therefore, most likely that the same enzyme system is operant in the synthesis of both 28-norcastasterone and castasterone. In the presence of S-adenosyl-L-methionine, the cell-free enzyme extract catalysed the C-24 methylation of 28-norcastasterone to castasterone, although the conversion rates of 28-norteasterone to teasterone and 28-nortyphasterol to typhasterol were much lower; this suggests that 28-norcastasterone is the primary precursor for the generation of C(28)-BRs from C(27)-BRs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Brassinosteroids/metabolism , Cholestanols/metabolism , Cytochrome P-450 Enzyme System/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Cholesterol/metabolism , Mutation , Oxidation-Reduction , Saccharomyces/genetics , Saccharomyces/metabolism , Transgenes
20.
Mol Plant ; 15(6): 991-1007, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35524409

ABSTRACT

Salicylic acid (SA) plays an important role in plant immune response, including resistance to pathogens and systemic acquired resistance. Two major components, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPRs) and TGACG motif-binding transcription factors (TGAs), are known to mediate SA signaling, which might also be orchestrated by other hormonal and environmental changes. Nevertheless, the molecular and functional interactions between SA signaling components and other cellular signaling pathways remain poorly understood. Here we showed that the steroid plant hormone brassinosteroid (BR) promotes SA responses by inactivating BR-INSENSITIVE 2 (BIN2), which inhibits the redox-sensitive clade I TGAs in Arabidopsis. We found that both BR and the BIN2 inhibitor bikinin synergistically increase SA-mediated physiological responses, such as resistance to Pst DC3000. Our genetic and biochemical analyses indicated that BIN2 functionally interacts with TGA1 and TGA4, but not with other TGAs. We further demonstrated that BIN2 phosphorylates Ser-202 of TGA4, resulting in the suppression of the redox-dependent interaction between TGA4 and NPR1 as well as destabilization of TGA4. Consistently, transgenic Arabidopsis overexpressing TGA4-YFP with a S202A mutation displayed enhanced SA responses compared to the wild-type TGA4-YFP plants. Taken together, these results suggest a novel crosstalk mechanism by which BR signaling coordinates the SA responses mediated by redox-sensitive clade I TGAs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Gene Expression Regulation, Plant , Immunity , Phosphorylation , Protein Kinases/metabolism , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL