Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Syst Evol Microbiol ; 70(3): 1591-1595, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31935175

ABSTRACT

The 16S rRNA gene sequence of 'Streptomyces hyalinum' NBRC 13850T shows 99.7 % similarity to that of Embleya scabrispora DSM 41855T; however, it shows <96.1 % similarity to any other type strains, including Streptomyces spp. Phylogenetic analysis based on 16S rRNA gene sequences clearly suggests that 'S. hyalinum' belongs to the genus Embleya rather than to Streptomyces. The strain possesses ll-diaminopimelic acid in the cell wall. The major menaquinone observed is MK-9(H6), and MK-9(H4) and MK-9(H8) are minor components. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. In this study, the whole genome of strain NBRC 13850T was sequenced, and digital DNA-DNA hybridisation between 'S. hyalinum' NBRC 13850T and E. scabrispora DSM 41855T demonstrated 31.2 % of relatedness value between the two genomes. Morphological, chemotaxonomic, biochemical and physiological data also revealed that 'S. hyalinum' can be easily differentiated from E. scabrispora (the only the valid species of the genus Embleya) and that it merits separate species status. This phenotypic and genetic evidence reveals that 'S. hyalinum' represents a novel species of the genus Embleya; the name Embleya hyalina sp. nov. is proposed for this species. The type strain is NBRC 13850T (=ATCC 29817T=MB 891-A1T). We also emended the description of the genus Embleya considering the feature of E. hyalina.


Subject(s)
Phylogeny , Streptomyces/classification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
2.
Mol Pharmacol ; 95(5): 551-562, 2019 05.
Article in English | MEDLINE | ID: mdl-30944207

ABSTRACT

UDP-Glucuronosyltransferase (UGT) plays an important role in the metabolism of endogenous and exogenous compounds. UGT is a type I membrane protein, and has a dilysine motif (KKXX/KXKXX) in its C-terminal cytoplasmic domain. Although a dilysine motif is defined as an endoplasmic reticulum (ER) retrieval signal, it remains a matter of debate whether this motif functions in the ER localization of UGT. To address this issue, we generated systematic deletion mutants of UGT2B7, a major human isoform, and compared their subcellular localizations with that of an ER marker protein calnexin (CNX), using subcellular fractionation and immunofluorescent microscopy. We found that although the dilysine motif functioned as the ER retention signal in a chimera that replaced the cytoplasmic domain of CD4 with that of UGT2B7, UGT2B7 truncated mutants lacking this motif extensively colocalized with CNX, indicating dilysine motif-independent ER retention of UGT2B7. Moreover, deletion of the C-terminal transmembrane and cytoplasmic domains did not affect ER localization of UGT2B7, suggesting that the signal necessary for ER retention of UGT2B7 is present in its luminal domain. Serial deletions of the luminal domain, however, did not affect the ER retention of the mutants. Further, a cytoplasmic and transmembrane domain-deleted mutant of UGT2B7 was localized to the ER without being secreted. These results suggest that UGT2B7 could localize to the ER without any retention signal, and lead to the conclusion that the static localization of UGT results from lack of a signal for export from the ER.


Subject(s)
Endoplasmic Reticulum/metabolism , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Sequence Deletion/genetics , Animals , COS Cells , Calnexin/metabolism , Cell Line , Chlorocebus aethiops , Cytoplasm/metabolism , Dipeptides/metabolism , Humans , Membrane Proteins , Sf9 Cells
3.
J Nat Prod ; 81(7): 1561-1569, 2018 07 27.
Article in English | MEDLINE | ID: mdl-29939741

ABSTRACT

Two new furanone-containing polyketides, linfuranones B and C, were isolated from a plant-associated actinomycete of the genus Sphaerimonospora. Their structures were determined by NMR and MS spectroscopic analyses, and the absolute configurations were established by anisotropic methods and chemical degradation approaches. In silico analysis of biosynthetic genes suggested that linfuranone B is generated from linfuranone C by oxidative cleavage of the polyketide chain. Linfuranones B and C induced preadipocyte differentiation into matured adipocytes at 20-40 µM without showing cytotoxicity.


Subject(s)
Actinomycetales/chemistry , Adipocytes/drug effects , Furans/pharmacology , Polyketides/pharmacology , Acanthaceae/microbiology , Actinomycetales/isolation & purification , Adipogenesis/drug effects , Furans/chemistry , Furans/isolation & purification , Magnetic Resonance Spectroscopy , Polyketides/chemistry , Polyketides/isolation & purification
4.
Appl Environ Microbiol ; 83(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28625994

ABSTRACT

Iron and heme play very important roles in various metabolic functions in bacteria, and their intracellular homeostasis is maintained because high concentrations of free forms of these molecules greatly facilitate the Fenton reaction-mediated production of large amounts of reactive oxygen species that severely damage various biomolecules. The ferric uptake regulator (Fur) from Burkholderiamultivorans ATCC 17616 is an iron-responsive global transcriptional regulator, and its fur deletant exhibits pleiotropic phenotypes. In this study, we found that the phenotypes of the fur deletant were suppressed by an additional mutation in hemP The transcription of hemP was negatively regulated by Fur under iron-replete conditions and was constitutive in the fur deletant. Growth of a hemP deletant was severely impaired in a medium containing hemin as the sole iron source, demonstrating the important role of HemP in hemin utilization. HemP was required as a transcriptional activator that specifically binds the promoter-containing region upstream of a Fur-repressive hmuRSTUV operon, which encodes the proteins for hemin uptake. A hmuR deletant was still able to grow using hemin as the sole iron source, albeit at a rate clearly lower than that of the wild-type strain. These results strongly suggested (i) the involvement of HmuR in hemin uptake and (ii) the presence in ATCC 17616 of at least part of other unknown hemin uptake systems whose expression depends on the HemP function. Our in vitro analysis also indicated high-affinity binding of HemP to hemin, and such a property might modulate transcriptional activation of the hmu operon.IMPORTANCE Although the hmuRSTUV genes for the utilization of hemin as a sole iron source have been identified in a few Burkholderia strains, the regulatory expression of these genes has remained unknown. Our analysis in this study using B. multivorans ATCC 17616 showed that its HemP protein is required for expression of the hmuRSTUV operon, and the role of HemP in betaproteobacterial species was elucidated for the first time, to our knowledge, in this study. The HemP protein was also found to have two additional properties that have not been reported for functional homologues in other species; one is that HemP is able to bind to the promoter-containing region of the hmu operon to directly activate its transcription, and the other is that HemP is also required for the expression of an unknown hemin uptake system.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia/metabolism , Gene Expression Regulation, Bacterial , Hemin/metabolism , Trans-Activators/metabolism , Bacterial Proteins/genetics , Biological Transport , Burkholderia/genetics , Operon , Promoter Regions, Genetic , Trans-Activators/genetics , Transcriptional Activation
5.
Can J Physiol Pharmacol ; 94(12): 1298-1303, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27602794

ABSTRACT

Diabetic kidney disease is associated with oxidative stress, inflammation, and autophagy. The aim of this study was to investigate the effect of azuki bean (Vigna angularis) extract (ABE) on oxidative stress and autophagy in the kidneys of diabetic rats. Streptozotocin (STZ)-induced diabetic rats received 0, 10, or 40 mg/kg of ABE orally for 4 weeks, whereas vehicle-injected control rats received distilled water. Level of plasma glutathione and expression of heme oxygenase-1 (HO-1), p47phox (NADPH oxidase subunit), and markers associated with autophagy were examined. The glutathione level in the 40 mg/kg ABE-treated diabetic group (ABE-40 group) was higher than that of the untreated diabetic group (ABE-0 group). The HO-1 and p47phox protein expression levels of the ABE-40 group were lower (47% and 33%, respectively) than those of the ABE-0 group. The level of light chain 3B II (LC3B-II) was higher in the ABE-40 group than in the ABE-0 group. Protein levels of p62/sequestosome 1 (p62) in the ABE-40 group were lower than those in the ABE-0 group. Our results suggest that ABE may attenuate STZ-induced diabetic kidney injury by suppressing oxidative stress and (or) by upregulating autophagy.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Kidney/drug effects , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Vigna , Animals , Autophagy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Kidney/metabolism , Kidney/pathology , Male , Oxidative Stress/physiology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Rats , Rats, Wistar , Streptozocin
6.
Microbiology (Reading) ; 158(Pt 5): 1284-1293, 2012 May.
Article in English | MEDLINE | ID: mdl-22361941

ABSTRACT

Fur (ferric uptake regulator) is an iron-responsive transcriptional regulator in many bacterial species, and the fur mutant of Burkholderia multivorans ATCC 17616 exhibits pleiotropic phenotypes, such as an inability to efficiently use several carbon sources, as well as high sensitivity to hydrogen peroxide (H(2)O(2)), paraquat (a superoxide-producing compound) and nitric oxide (NO). To gain more insight into the pleiotropic role of the Fur protein of ATCC 17616, spontaneous suppressor mutants of the ATCC 17616 fur mutant that restored tolerance to NO were isolated and characterized in this study. The microarray-based comparative genomic analysis and subsequent sequencing analysis indicated that such suppressor mutants had a 2 bp deletion in the oxyR gene, whose orthologues encode H(2)O(2)-responsive transcriptional regulators in other bacterial species. The suppressor mutants and the reconstructed fur-oxyR double-deletion mutant showed indistinguishable phenotypes in that they were all (i) more resistant than the fur mutant to H(2)O(2), superoxide, NO and streptonigrin (an iron-activated antibiotic) and (ii) able to use carbon sources that cannot efficiently support the growth of the fur mutant. These results clearly indicate that the oxyR mutation suppressed the pleiotropic effect of the B. multivorans fur mutant. The fur-oxyR double mutants were found to overexpress the KatG (catalase/peroxidase) and AhpC1 and AhpD (alkyl hydroperoxide reductase subunits C and D) proteins, and their enzymic activities to remove reactive oxygen and nitrogen species were suggested to be responsible for the suppression of phenotypes caused by the fur mutation.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia/genetics , Repressor Proteins/metabolism , Suppression, Genetic , Bacterial Proteins/genetics , Burkholderia/metabolism , Catalase/metabolism , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Hydrogen Peroxide/metabolism , Iron/metabolism , Mutation , Nitrites/metabolism , Oxidative Stress , Peroxidases/metabolism , Peroxiredoxins/metabolism , Phenotype , Repressor Proteins/genetics , Sequence Analysis, DNA
7.
Front Pharmacol ; 13: 832931, 2022.
Article in English | MEDLINE | ID: mdl-35295333

ABSTRACT

Heterologous expression systems are important for analyzing the effects of genetic factors including single nucleotide polymorphisms on the functions of drug-metabolizing enzymes. In this study, we focused on a baculovirus-mammalian cell (Bac-Mam) expression system as a safer and more efficient approach for this purpose. The baculovirus-insect cell expression system is widely utilized in large-scale protein expression. Baculovirus has been shown to also infect certain mammalian cells, although the virus only replicates in insect cells. With this knowledge, baculovirus is now being applied in a mammalian expression system called the Bac-Mam system wherein a gene-modified baculovirus is used whose promotor is replaced with one that can function in mammalian cells. We subcloned open-reading frames of cytochrome P450 3A4 (CYP3A4), UDP-glucuronosyltransferase (UGT) 1A1, and UGT2B7 into a transfer plasmid for the Bac-Mam system, and prepared recombinant Bac-Mam virus. The obtained virus was amplified in insect Sf9 cells and used to infect mammalian COS-1 cells. Expression of CYP3A4, UGT1A1, and UGT2B7 in COS-1 cell homogenates were confirmed by immunoblotting. Optimum infection conditions including the amount of Bac-Mam virus, culture days before collection, and concentration of sodium butyrate, an enhancer of viral-transduction were determined by monitoring CYP3A4 expression. Expressed CYP3A4 showed appropriate activity without supplying hemin/5-aminolevulinic acid or co-expressing with NADPH-cytochrome P450 reductase. Further, we compared gene transfer efficiency between the Bac-Mam system and an established method using recombinant plasmid and transfection reagent. Our results indicate that the Bac-Mam system can be applied to introduce drug-metabolizing enzyme genes into mammalian cells that are widely used in drug metabolism research. The expressed enzymes are expected to undergo appropriate post-translational modification as they are in mammalian bodies. The Bac-Mam system may thus accelerate pharmacogenetics and pharmacogenomics research.

8.
Drug Metab Pharmacokinet ; 35(5): 466-474, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32883578

ABSTRACT

UDP-Glucuronosyltransferase (UGT) is a type I membrane protein localized to the endoplasmic reticulum (ER). UGT has a di-lysine motif (KKXX/KXKXX) in its cytoplasmic domain, which is defined as an ER retention signal. However, our previous study has revealed that UGT2B7, one of the major UGT isoform in human, localizes to the ER in a manner that is independent of this motif. In this study, we focused on another UGT isoform, UGT1A9, and investigated the role of the di-lysine motif in its ER localization, glucuronidation activity, and homo-oligomer formation. Immunofluorescence microscopy indicated that the cytoplasmic domain of UGT1A9 functioned as an ER retention signal in a chimeric protein with CD4, but UGT1A9 itself could localize to the ER in a di-lysine motif-independent manner. In addition, UGT1A9 formed homo-oligomers in the absence of the motif. However, deletion of the di-lysine motif or substitution of lysines in the motif for alanines, severely impaired glucuronidation activity of UGT1A9. This is the first study that re-defines the cytoplasmic di-lysine motif of UGT as an essential peptide for retaining glucuronidation capacity.


Subject(s)
Biocatalysis , Glucuronosyltransferase/metabolism , Lysine/metabolism , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Endoplasmic Reticulum/metabolism , Humans , UDP-Glucuronosyltransferase 1A9
9.
J Antibiot (Tokyo) ; 73(3): 141-151, 2020 03.
Article in English | MEDLINE | ID: mdl-31853029

ABSTRACT

Streptomyces sp. CHI39, isolated from a rock soil sample, is a producer of abyssomicin I. The taxonomic status was clarified by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was closely related to Streptomyces fragilis, with similarity of 99.9%. Strain CHI39 comprised LL-diaminopimelic acid, glutamic acid, glycine, and alanine in its peptidoglycan. The predominant menaquinones were MK-9(H6), and major fatty acids were anteiso-C15:0, anteiso-C17:0, and iso-C16:0. The chemotaxonomic features matched those described for the genus Streptomyces. Genome sequencing was conducted for strain CHI39 and S. fragilis NBRC 12862T. The results of digital DNA-DNA hybridization along with differences in phenotypic characteristics between the strains suggested strain CHI39 to be a novel species, for which Streptomyces abyssomicinicus sp. nov. is proposed; the type strain is CHI39T (=NBRC 110469T). Next, we surveyed polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters in genomes of S. abyssomicinicus CHI39T and S. fragilis NBRC 12862T. These strains encoded 9 and 12 clusters, respectively, among which only four clusters were shared between them while the others are specific in each strain. This suggests that strains classified to distinct species each harbor many specific secondary metabolite-biosynthetic pathways even if the strains are taxonomically close.


Subject(s)
Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Peptide Synthases/metabolism , Polyketide Synthases/metabolism , Streptomyces/enzymology , Bridged Bicyclo Compounds, Heterocyclic , Multigene Family , Peptide Synthases/genetics , Polyketide Synthases/genetics , Streptomyces/genetics
10.
Sci Rep ; 8(1): 6888, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720592

ABSTRACT

To identify the species of butyrolactol-producing Streptomyces strain TP-A0882, whole genome-sequencing of three type strains in a close taxonomic relationship was performed. In silico DNA-DNA hybridization using the genome sequences suggested that Streptomyces sp. TP-A0882 is classified as Streptomyces diastaticus subsp. ardesiacus. Strain TP-A0882, S. diastaticus subsp. ardesiacus NBRC 15402T, Streptomyces coelicoflavus NBRC 15399T, and Streptomyces rubrogriseus NBRC 15455T harbor at least 14, 14, 10, and 12 biosynthetic gene clusters (BGCs), respectively, coding for nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). All 14 gene clusters were shared by S. diastaticus subsp. ardesiacus strains TP-A0882 and NBRC 15402T, while only four gene clusters were shared by the three distinct species. Although BGCs for bacteriocin, ectoine, indole, melanine, siderophores such as deferrioxamine, terpenes such as albaflavenone, hopene, carotenoid and geosmin are shared by the three species, many BGCs for secondary metabolites such as butyrolactone, lantipeptides, oligosaccharide, some terpenes are species-specific. These results indicate the possibility that strains belonging to the same species possess the same set of secondary metabolite-biosynthetic pathways, whereas strains belonging to distinct species have species-specific pathways, in addition to some common pathways, even if the strains are taxonomically close.


Subject(s)
Bacterial Proteins/genetics , Genetic Variation , Peptide Synthases/genetics , Polyketide Synthases/genetics , Streptomyces/genetics , Bacterial Proteins/chemistry , Peptide Synthases/chemistry , Phylogeny , Polyketide Synthases/chemistry , Streptomyces/classification , Streptomyces/enzymology
11.
Stand Genomic Sci ; 13: 2, 2018.
Article in English | MEDLINE | ID: mdl-29371910

ABSTRACT

Streptomyces hyaluromycini MB-PO13T (=NBRC 110483T = DSM 100105T) is type strain of the species, which produces a hyaluronidase inhibitor, hyaluromycin. Here, we report the draft genome sequence of this strain together with features of the organism and generation, annotation and analysis of the genome sequence. The 11.5 Mb genome of Streptomyces hyaluromycini MB-PO13T encoded 10,098 putative ORFs, of which 5317 were assigned with COG categories. The genome harbored at least six type I PKS clusters, three type II PKS gene clusters, two type III PKS gene clusters, six NRPS gene clusters, and one hybrid PKS/NRPS gene cluster. The type II PKS gene cluster including 2-amino-3-hydroxycyclopent-2-enone synthetic genes was identified to be responsible for hyaluromycin synthesis. We propose the biosynthetic pathway based on bioinformatic analysis.

12.
Genome Announc ; 5(2)2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28082502

ABSTRACT

We report the draft genome sequence of Streptomyces sp. TP-A0648 isolated from a leaf of Aucuba japonica This strain produces a new tumor cell growth inhibitor designated anicemycin. The genome harbors at least 12 biosynthetic gene clusters for polyketides and nonribosomal peptides, suggesting the potential to produce diverse secondary metabolites.

13.
FEMS Microbiol Lett ; 362(9)2015 May.
Article in English | MEDLINE | ID: mdl-25837815

ABSTRACT

The csnR gene, localized at the beginning of an operon, csnR-K, which organization is conserved through many actinomycete genomes, was previously shown to repress the transcription of the chitosanase gene csnA in Streptomyces lividans. However, knowledge on the function of the whole csnR-K operon in the metabolism of chitosan (an N-deacetylated derivative of chitin) remained limited. Mutants of S. coelicolor A3(2) harboring partial or total deletions of the csnR-K operon were analyzed for their capacity to uptake glucosamine oligosaccharides (GlcN)n. The csnR-K operon was autoregulated by CsnR repressor and its transcription was inducible by GlcN oligosaccharides. The operon controlled the uptake of GlcN oligosaccharides in S. coelicolor A3(2), with a minor contribution to the consumption of monomeric GlcN but not chitin-related N-acetylated derivatives. The deletion of the whole operon abolished the uptake of GlcN oligosaccharides. The CsnEFG transporter encoded by this operon is the front door for the assimilation of chitosan-derived hydrolysis products in S. coelicolor A3(2). The ATP-binding component MsiK was essential for CsnEFG transport function. Also, deletion of msiK abolished the induction of csnA transcription by GlcN oligosaccharides.


Subject(s)
Chitosan/metabolism , Oligosaccharides/metabolism , Operon , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Biological Transport/genetics , Chitin/metabolism , Gene Deletion , Glucosamine/metabolism , Glycoside Hydrolases/genetics , Hydrolysis , Mutation
14.
FEMS Microbiol Lett ; 340(1): 33-40, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23278377

ABSTRACT

The dasD gene is located just downstream of the dasABC gene cluster, encoding components of an ABC transporter for uptake of a chitin-degradation product N,N'-diacetylchitobiose [(GlcNAc)(2) ] in Streptomyces coelicolor A3(2). To clarify the roles of the DasD protein in the degradation and assimilation of chitin, we obtained and characterized a recombinant DasD protein and a dasD-null mutant of S. coelicolor A3(2). The recombinant DasD protein produced in Escherichia coli showed N-acetyl-ß-d-glucosaminidase (GlcNAcase) activity and its optimum temperature and pH were 40 °C and 7, respectively. dasD transcription was strongly induced in the presence of chitin, weakly by chitosan, but not by cellulose or xylan in S. coelicolor A3(2). Immuno-blot analysis demonstrated that DasD is a cytoplasmic protein. The dasD-null mutant exhibited cellular GlcNAcase activity which was comparable with that of the parent strain M145. DasD, thus, did not seem to be a major GlcNAcase. Induced extracellular chitinase activity in the dasD-null mutant was, interestingly, higher than M145, in the presence of colloidal chitin or (GlcNAc)(2) . In contrast to M145, (GlcNAc)(2) temporally accumulated in the culture supernatant of the dasD-null mutant in the presence of colloidal chitin.


Subject(s)
Acetylglucosaminidase/genetics , Acetylglucosaminidase/metabolism , Streptomyces coelicolor/enzymology , Chitin/metabolism , Cloning, Molecular , Cytoplasm/enzymology , Enzyme Stability , Escherichia coli , Gene Deletion , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL