Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Gastroenterology ; 159(1): 306-319.e12, 2020 07.
Article in English | MEDLINE | ID: mdl-32179091

ABSTRACT

BACKGROUND & AIMS: Advanced pancreatic ductal adenocarcinoma (PDAC) is resistant to therapy, including immune checkpoint inhibitors. We evaluated the effects of a neutralizing antibody against programmed cell death 1 (PD-1) and an agonist of OX40 (provides a survival signal to activated T cells) in mice with pancreatic tumors. METHODS: We performed studies in C57BL/6 mice (controls), KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) mice, and mice with orthotopic tumors grown from Panc02 cells, KrasG12D;P53flox/flox;PDX-1-Cre;Luciferase (KPC-Luc) cells, or mT4 cells. After tumors developed, mice were given injections of control antibody or anti-OX40 and/or anti-PD-1 antibody. Some mice were then given injections of antibodies against CD8, CD4, or NK1.1 to deplete immune cells, and IL4 or IL7RA to block cytokine signaling. Bioluminescence imaging was used to monitor tumor growth. Tumor tissues collected and single-cell suspensions were analyzed by time of flight mass spectrometry analysis. Mice that were tumor-free 100 days after implantation of orthotopic tumors were rechallenged with PDAC cells (KPC-Luc or mT4) and survival was measured. Median levels of PD-1 and OX40 mRNAs in PDACs were determined from The Cancer Genome Atlas and compared with patient survival times. RESULTS: In mice with orthotopic tumors, all those given control antibody or anti-PD-1 died within 50 days, whereas 43% of mice given anti-OX40 survived for 225 days; almost 100% of mice given the combination of anti-PD-1 and anti-OX40 survived for 225 days, and tumors were no longer detected. KPC mice given control antibody, anti-PD-1, or anti-OX40 had median survival times of 50 days or less, whereas mice given the combination of anti-PD-1 and anti-OX40 survived for a median 88 days. Mice with orthotopic tumors that were given the combination of anti-PD-1 and anti-OX40 and survived 100 days were rechallenged with a second tumor; those rechallenged with mT4 cells survived an additional median 70 days and those rechallenged with KPC-Luc cells survived long term, tumor free. The combination of anti-PD-1 and anti-OX40 did not slow tumor growth in mice with antibody-mediated depletion of CD4+ T cells. Mice with orthotopic tumors given the combination of anti-PD-1 and anti-OX40 that survived after complete tumor rejection were rechallenged with KPC-Luc cells; those with depletion of CD4+ T cells before the rechallenge had uncontrolled tumor growth. Furthermore, KPC orthotopic tumors from mice given the combination contained an increased number of CD4+ T cells that expressed CD127 compared with mice given control antibody. The combination of agents reduced the proportion of T-regulatory and exhausted T cells and decreased T-cell expression of GATA3; tumor size was negatively associated with numbers of infiltrating CD4+ T cells, CD4+CD127+ T cells, and CD8+CD127+ T cells, and positively associated with numbers of CD4+PD-1+ T cells, CD4+CD25+ T cells, and CD8+PD-1+ T cells. PDACs with high levels of OX40 and low levels of PD-1 were associated with longer survival times of patients. CONCLUSIONS: Pancreatic tumors appear to evade the immune response by inducing development of immune-suppressive T cells. In mice, the combination of anti-PD-1 inhibitory and anti-OX40 agonist antibodies reduces the proportion of T-regulatory and exhausted T cells in pancreatic tumors and increases numbers of memory CD4+ and CD8+ T cells, eradicating all detectable tumor. This information can be used in development of immune-based combination therapies for PDAC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Immune Checkpoint Inhibitors/pharmacology , OX40 Ligand/agonists , Pancreatic Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor/transplantation , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunologic Memory/drug effects , Male , Mice , Pancreas/immunology , Pancreas/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
2.
Nature ; 517(7536): 626-30, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25409149

ABSTRACT

TP53 is commonly altered in human cancer, and Tp53 reactivation suppresses tumours in vivo in mice (TP53 and Tp53 are also known as p53). This strategy has proven difficult to implement therapeutically, and here we examine an alternative strategy by manipulating the p53 family members, Tp63 and Tp73 (also known as p63 and p73, respectively). The acidic transactivation-domain-bearing (TA) isoforms of p63 and p73 structurally and functionally resemble p53, whereas the ΔN isoforms (lacking the acidic transactivation domain) of p63 and p73 are frequently overexpressed in cancer and act primarily in a dominant-negative fashion against p53, TAp63 and TAp73 to inhibit their tumour-suppressive functions. The p53 family interacts extensively in cellular processes that promote tumour suppression, such as apoptosis and autophagy, thus a clear understanding of this interplay in cancer is needed to treat tumours with alterations in the p53 pathway. Here we show that deletion of the ΔN isoforms of p63 or p73 leads to metabolic reprogramming and regression of p53-deficient tumours through upregulation of IAPP, the gene that encodes amylin, a 37-amino-acid peptide co-secreted with insulin by the ß cells of the pancreas. We found that IAPP is causally involved in this tumour regression and that amylin functions through the calcitonin receptor (CalcR) and receptor activity modifying protein 3 (RAMP3) to inhibit glycolysis and induce reactive oxygen species and apoptosis. Pramlintide, a synthetic analogue of amylin that is currently used to treat type 1 and type 2 diabetes, caused rapid tumour regression in p53-deficient thymic lymphomas, representing a novel strategy to target p53-deficient cancers.


Subject(s)
Islet Amyloid Polypeptide/metabolism , Lymphoma/metabolism , Lymphoma/pathology , Tumor Suppressor Protein p53/deficiency , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Genes, Tumor Suppressor , Humans , Islet Amyloid Polypeptide/pharmacology , Islet Amyloid Polypeptide/therapeutic use , Lymphoma/drug therapy , Lymphoma/genetics , Male , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptor Activity-Modifying Protein 3/metabolism , Receptors, Calcitonin/metabolism , Thymus Gland/metabolism , Thymus Gland/pathology , Trans-Activators/genetics , Trans-Activators/metabolism , Tumor Protein p73 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
3.
Magn Reson Med ; 73(5): 1726-32, 2015 May.
Article in English | MEDLINE | ID: mdl-24903532

ABSTRACT

PURPOSE: There is great potential for real-time investigation of metabolism with MRS and hyperpolarized (HP) (13) C agents. Unfortunately, HP technology has high associated costs and efficiency limitations that may constrain in vivo studies involving many animals. To improve the throughput of preclinical investigations, we evaluate the feasibility of performing HP MRS on multiple animals simultaneously. METHODS: Simulations helped assess the viability of a dual-coil strategy for spatially localized multivolume MRS. A dual-mouse system was assembled and characterized with bench- and scanner-based experiments. Enzyme phantoms mixed with HP [1-(13) C] pyruvate emulated real-time metabolism and offered a controlled mechanism for evaluating system performance. Finally, a normal mouse and a mouse bearing a subcutaneous xenograft of colon cancer were simultaneously scanned in vivo using an agent containing HP [1-(13) C] pyruvate. RESULTS: Geometric separation/rotation, active decoupling, and use of low input impedance preamplifiers permitted an encode-by-channel approach for spatially localized MRS. A precalibrated shim allowed straightforward metabolite differentiation in enzyme phantom and in vivo experiments at 7 Tesla, with performance similar to conventional acquisitions. CONCLUSION: The initial feasibility of multi-animal HP (13) C MRS was established. Throughput scales with the number of simultaneously scanned animals, demonstrating the potential for significant improvements in study efficiency.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy/instrumentation , Carbon-13 Magnetic Resonance Spectroscopy/methods , Colonic Neoplasms/physiopathology , Energy Metabolism/physiology , Animals , Carbon-13 Magnetic Resonance Spectroscopy/economics , Cost-Benefit Analysis , Equipment Design , Feasibility Studies , Heterografts , Lactic Acid/metabolism , Mice , Mice, Nude , Neoplasm Transplantation , Phantoms, Imaging , Pyruvic Acid/metabolism
4.
iScience ; 26(2): 106020, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824283

ABSTRACT

Despite modest clinical improvement with anti-vascular endothelial growth factor antibody (AVA) therapy in ovarian cancer, adaptive resistance is ubiquitous and additional options are limited. A dependence on glutamine metabolism, via the enzyme glutaminase (GLS), is a known mechanism of adaptive resistance and we aimed to investigate the utility of a GLS inhibitor (GLSi). Our in vitro findings demonstrated increased glutamine abundance and a significant cytotoxic effect in AVA-resistant tumors when GLSi was administered in combination with bevacizumab. In vivo, GLSi led to a reduction in tumor growth as monotherapy and when combined with AVA. Furthermore, GLSi initiated after the emergence of resistance to AVA therapy resulted in a decreased metabolic conversion of pyruvate to lactate as assessed by hyperpolarized magnetic resonance spectroscopy and demonstrated robust antitumor effects with a survival advantage. Given the increasing population of patients receiving AVA therapy, these findings justify further development of GLSi in AVA resistance.

5.
EJNMMI Phys ; 9(1): 70, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209262

ABSTRACT

BACKGROUND: PET/MRI is an attractive imaging modality due to the complementary nature of MRI and PET. Obtaining high quality small animal PET/MRI results is key for the translation of novel PET/MRI agents and techniques to the radiology clinic. To obtain high quality imaging results, a hybrid PET/MRI system requires additional considerations beyond the standard issues with separate PET and MRI systems. In particular, researchers must understand how their PET system affects the MR acquisitions and vice versa. Depending on the application, some of these effects may substantially influence image quality. Therefore, the goal of this report is to provide guidance, recommendations, and practical experiments for implementing and using a small animal PET/MRI instrument. RESULTS: Various PET and MR image quality parameters were tested with their respective modality alone and in the presence of both systems to determine how the combination of PET/MRI affects image quality. Corrections and calibrations were developed for many of these effects. While not all image characteristics were affected, some characteristics such as PET quantification, PET SNR, PET spatial resolution, PET partial volume effects, and MRI SNR were altered by the presence of both systems. CONCLUSIONS: A full exploration of a new PET/MRI system before performing small animal PET/MRI studies is beneficial and necessary to ensure that the new instrument can produce highly accurate and precise PET/MR images.

6.
Med Phys ; 48(11): 7323-7332, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34559413

ABSTRACT

PURPOSE: Precise correlation between three-dimensional (3D) imaging and histology can aid biomechanical modeling of the breast. We develop a framework to register ex vivo images to histology using a novel cryo-fluorescence tomography (CFT) device. METHODS: A formalin-fixed cadaveric breast specimen, including chest wall, was subjected to high-resolution magnetic resonance (MR) imaging. The specimen was then frozen and embedded in an optimal cutting temperature (OCT) compound. The OCT block was placed in a CFT device with an overhead camera and 50 µm thick slices were successively shaved off the block. After each shaving, the block-face was photographed. At select locations including connective/adipose tissue, muscle, skin, and fibroglandular tissue, 20 µm sections were transferred onto cryogenic tape for manual hematoxylin and eosin staining, histological assessment, and image capture. A 3D white-light image was automatically reconstructed from the photographs by aligning fiducial markers embedded in the OCT block. The 3D MR image, 3D white-light image, and photomicrographs were rigidly registered. Target registration errors (TREs) were computed based on 10 pairs of points marked at fibroglandular intersections. The overall MR-histology registration was used to compare the MR intensities at tissue extraction sites with a one-way analysis of variance. RESULTS: The MR image to CFT-captured white-light image registration achieved a mean TRE of 0.73 ± 0.25 mm (less than the 1 mm MR slice resolution). The block-face white-light image and block-face photomicrograph registration showed visually indistinguishable alignment of anatomical structures and tissue boundaries. The MR intensities at the four tissue sites identified from histology differed significantly (p < 0.01). Each tissue pair, except the skin-connective/adipose tissue pair, also had significantly different MR intensities (p < 0.01). CONCLUSIONS: Fine sectioning in a highly controlled imaging/sectioning environment enables accurate registration between the MR image and histology. Statistically significant differences in MR signal intensities between histological tissues are indicators for the specificity of correlation between MRI and histology.


Subject(s)
Histological Techniques , Imaging, Three-Dimensional , Breast/diagnostic imaging , Fiducial Markers , Humans , Magnetic Resonance Imaging
7.
Magn Reson Imaging ; 57: 156-164, 2019 04.
Article in English | MEDLINE | ID: mdl-30465870

ABSTRACT

OBJECTIVES: To compare the accuracy of contrast-enhanced ultrasound (CEUS) and Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for the assessment of changes in tissue vascularization as result of sorafenib treatment in a rat model of hepatocellular carcinoma (HCC). METHODS: Male Buffalo rats with orthotopic liver tumors treated daily with 7.5 mg/kg sorafenib via oral gavage for 2 weeks (n = 9) were subject to DCE-MRI and CEUS 2 weeks after tumor implantation - right before treatment initiation - and also after treatment completion - right before tumor harvest. Untreated animals (n = 10) were used as control. Tumor tissue sections were stained for hematoxylin-eosin, pimonidazole, and CD34 for quantitative assessment of necrosis, hypoxia, and microvessel density (MVD), respectively. RESULTS: Of all the DCE-MRI parameters that were evaluated, only volume transfer constant (Ktrans) measurements were significantly lower in sorafenib-treated tumors (0.18 vs 0.33 min-1, p < 0.01), indicating a substantial decrease in vascular permeability caused by the therapy. This reduction was associated with decreased MVD (3.9 vs 10.8% CD34+ cells, p < 0.01), higher tumor necrosis (31.9 vs 21.8%, p < 0.001) and hypoxia (19.7 vs 10.5% pimonidazole binding, p < 0.01). Moreover, statistical analysis demonstrate significant correlation of DCE-MRI Ktrans with histopathologic tissue necrosis (r = -0.537, p < 0.05) and MVD (r = 0.599, p < 0.05). Interestingly, none of the CEUS measurements were significantly different between the control and treatment groups, and did not show statistical correlation with any of the histopathological parameters assessed (p > 0.05). CONCLUSIONS: Sorafenib-induced reduction in vascular permeability in this preclinical model of HCC is detected more accurately through DCE-MRI than CEUS, and DCE-MRI parameters strongly correlate with histopathological changes in tissue vascularization and tissue necrosis.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Contrast Media/chemistry , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Sorafenib/chemistry , Animals , Biomarkers, Tumor , Capillary Permeability , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Disease Models, Animal , Hypoxia , Image Processing, Computer-Assisted , Liver Neoplasms/pathology , Male , Necrosis , Neovascularization, Pathologic , Permeability , Rats
8.
Dis Model Mech ; 12(12)2019 12 17.
Article in English | MEDLINE | ID: mdl-31732509

ABSTRACT

Mouse models of gastroesophageal junction (GEJ) cancer strive to recapitulate the intratumoral heterogeneity and cellular crosstalk within patient tumors to improve clinical translation. GEJ cancers remain a therapeutic challenge due to the lack of a reliable mouse model for preclinical drug testing. In this study, a novel patient-derived orthotopic xenograft (PDOX) was established from GEJ cancer via transabdominal surgical implantation. Patient tumor was compared to subcutaneously implanted patient-derived tumor xenograft (PDX) and PDOX by Hematoxylin and Eosin staining, immunohistochemistry and next-generation sequencing. Treatment efficacy studies of radiotherapy were performed. We observed that mechanical abrasion of mouse GEJ prior to surgical implantation of a patient-derived tumor in situ promotes tumor engraftment (100%, n=6). Complete PDOX engraftment was observed with rapid intra- and extraluminal tumor growth, as evidenced by magnetic resonance imaging. PDOXs contain fibroblasts, tumor-associated macrophages, immune and inflammatory cells, vascular and lymphatic vessels. Stromal hallmarks of aggressive GEJ cancers are recapitulated in a GEJ PDOX mouse model. PDOXs demonstrate tumor invasion into vasculature and perineural space. Next-generation sequencing revealed loss of heterozygosity with very high allelic frequency in NOTCH3, TGFB1, EZH2 and KMT2C in the patient tumor, the subcutaneous PDX and the PDOX. Immunohistochemical analysis of Her2/neu (also known as ERBB2), p53 (also known as TP53) and p16 (also known as CDKN2A) in PDX and PDOX revealed maintenance of expression of proteins found in patient tumors, but membranous EGFR overexpression in patient tumor cells was absent in both xenografts. Targeted radiotherapy in this model suggested a decrease in size by 61% according to Response Evaluation Criteria in Solid Tumors (RECIST), indicating a partial response to radiation therapy. Our GEJ PDOX model exhibits remarkable fidelity to human disease and captures the precise tissue microenvironment present within the local GEJ architecture, providing a novel tool for translating findings from studies on human GEJ cancer. This model can be applied to study metastatic progression and to develop novel therapeutic approaches for the treatment of GEJ cancer.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adenocarcinoma/pathology , Disease Models, Animal , Esophageal Neoplasms/pathology , Xenograft Model Antitumor Assays , Alleles , Animals , Cell Line, Tumor , Computational Biology , Disease Progression , Female , Fibroblasts/metabolism , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Immune System , Inflammation , Macrophages/metabolism , Mice , Mice, SCID , Neoplasm Metastasis , Neoplasm Transplantation , Translational Research, Biomedical
9.
Cancer Res ; 79(9): 2327-2338, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043430

ABSTRACT

When pancreatic cancer cannot be removed surgically, patients frequently experience morbidity and death from progression of their primary tumor. Radiation therapy (RT) cannot yet substitute for an operation because radiation causes fatal bleeding and ulceration of the nearby stomach and intestines before achieving tumor control. There are no FDA-approved medications that prevent or reduce radiation-induced gastrointestinal injury. Here, we overcome this fundamental problem of anatomy and biology with the use of the oral EGLN inhibitor FG-4592, which selectively protects the intestinal tract from radiation toxicity without protecting tumors. A total of 70 KPC mice with autochthonous pancreatic tumors received oral FG-4592 or vehicle control ± ablative RT to a cumulative 75 Gy administered in 15 daily fractions to a limited tumor field. Although ablative RT reduced complications from local tumor progression, fatal gastrointestinal bleeding was observed in 56% of mice that received high-dose RT with vehicle control. However, radiation-induced bleeding was completely ameliorated in mice that received high-dose RT with FG-4592 (0% bleeding, P < 0.0001 compared with vehicle). Furthermore, FG-4592 reduced epithelial apoptosis by half (P = 0.002) and increased intestinal microvessel density by 80% compared with vehicle controls. EGLN inhibition did not stimulate cancer growth, as treatment with FG-4592 alone, or overexpression of HIF2 within KPC tumors independently improved survival. Thus, we provide a proof of concept for the selective protection of the intestinal tract by the EGLN inhibition to enable ablative doses of cytotoxic therapy in unresectable pancreatic cancer by reducing untoward morbidity and death from radiation-induced gastrointestinal bleeding. SIGNIFICANCE: Selective protection of the intestinal tract by EGLN inhibition enables potentially definitive doses of radiation therapy. This might allow radiation to be a surgical surrogate for unresectable pancreatic cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2327/F1.large.jpg.


Subject(s)
Glycine/analogs & derivatives , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Isoquinolines/pharmacology , Pancreatic Neoplasms/mortality , Radiation Injuries/prevention & control , Radiation-Protective Agents/pharmacology , Radiotherapy/mortality , Animals , Apoptosis , Female , Glycine/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Proto-Oncogene Proteins p21(ras)/physiology , Radiation Injuries/etiology , Radiation Injuries/mortality , Radiotherapy/adverse effects , Transcription Factors/physiology , Tumor Suppressor Protein p53/physiology
10.
Neoplasia ; 20(10): 975-984, 2018 10.
Article in English | MEDLINE | ID: mdl-30157470

ABSTRACT

Mouse models are powerful tools to study lung cancer initiation and progression in vivo and have contributed significantly to recent advances in therapy. Using micro-computed tomography to monitor and study parenchymal and extra-parenchymal metastases in existing murine models of lung cancer is challenging owing to a lack of radiographic contrast and difficulty in achieving respiratory gating. To facilitate the analysis of these in vivo imaging studies and study of tumor progression in murine models we developed a novel, rapid, semi-automated method of calculating thoracic tumor burden from computed tomography images. This method, in which commercially available software is used to calculate the mass of the thoracic cavity (MTC), takes into account the aggregate tumor burden in the thoracic cavity. The present study showed that in tumor-free mice, the MTC does not change over time and is not affected by breathing, whereas in tumor-bearing mice, the increase in the MTC is a measure of tumor mass that correlates well with tumor burden measured by lung weight. Tumor burden calculated with our MTC method correlated with that measured by lung weight as well as or better than that calculated using four established methods. To test this method, we assessed metastatic tumor development and response to a pharmacologic PLK1 inhibitor in an orthotopic xenograft mouse model. PLK1 inhibition significantly inhibited tumor growth. Our results demonstrate that the MTC method can be used to study dynamic changes in tumor growth and response to therapeutics in genetically engineered mouse models and orthotopic xenograft mouse models of lung cancer.


Subject(s)
Lung Neoplasms/diagnostic imaging , Neoplasms, Experimental/diagnostic imaging , Thoracic Cavity/diagnostic imaging , Tumor Burden , X-Ray Microtomography/methods , Animals , Antineoplastic Agents/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Mice, Inbred Strains , Mice, Transgenic , Neoplasms, Experimental/pathology , Pteridines/pharmacology , Thoracic Cavity/pathology , Thoracic Neoplasms/diagnostic imaging , Tumor Burden/drug effects
11.
Oncotarget ; 9(85): 35581-35597, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30473752

ABSTRACT

Cognitive impairments are a common side effect of chemotherapy that often persists long after treatment completion. There are no FDA-approved interventions to treat these cognitive deficits also called 'chemobrain'. We hypothesized that nasal administration of mesenchymal stem cells (MSC) reverses chemobrain. To test this hypothesis, we used a mouse model of cognitive deficits induced by cisplatin that we recently developed. Mice were treated with two cycles of cisplatin followed by nasal administration of MSC. Cisplatin treatment induced deficits in the puzzle box, novel object/place recognition and Y-maze tests, indicating cognitive impairment. Nasal MSC treatment fully reversed these cognitive deficits in males and females. MSC also reversed the cisplatin-induced damage to cortical myelin. Resting state functional MRI and connectome analysis revealed a decrease in characteristic path length after cisplatin, while MSC treatment increased path length in cisplatin-treated mice. MSCs enter the brain but did not survive longer than 12-72 hrs, indicating that they do not replace damaged tissue. RNA-sequencing analysis identified mitochondrial oxidative phosphorylation as a top pathway activated by MSC administration to cisplatin-treated mice. Consistently, MSC treatment restored the cisplatin-induced mitochondrial dysfunction and structural abnormalities in brain synaptosomes. Nasal administration of MSC did not interfere with the peripheral anti-tumor effect of cisplatin. In conclusion, nasal administration of MSC may represent a powerful, non-invasive, and safe regenerative treatment for resolution of chemobrain.

12.
PLoS One ; 13(11): e0205803, 2018.
Article in English | MEDLINE | ID: mdl-30444887

ABSTRACT

Strong magnetic fields affect radiation dose deposition in MRI-guided radiation therapy systems, particularly at interfaces between tissues of differing densities such as those in the thorax. In this study, we evaluated the impact of a 1.5 T magnetic field on radiation-induced lung damage in C57L/J mice. We irradiated 140 mice to the whole thorax with parallel-opposed Co-60 beams to doses of 0, 9.0, 10.0, 10.5, 11.0, 12.0, or 13.0 Gy (20 mice per dose group). Ten mice per dose group were irradiated while a 1.5 T magnetic field was applied transverse to the radiation beam and ten mice were irradiated with the magnetic field set to 0 T. We compared survival and noninvasive assays of radiation-induced lung damage, namely respiratory rate and metrics derived from thoracic cone-beam CTs, between the two sets of mice. We report two main results. First, the presence of a transverse 1.5 T field during irradiation had no impact on survival of C57L/J mice. Second, there was a small but statistically significant effect on noninvasive assays of radiation-induced lung damage. These results provide critical safety data for the clinical introduction of MRI-guided radiation therapy systems.


Subject(s)
Lung/radiation effects , Radiation Injuries, Experimental/physiopathology , Radiotherapy, Image-Guided/adverse effects , Thorax/physiopathology , Animals , Electromagnetic Fields/adverse effects , Humans , Lung/physiopathology , Magnetic Resonance Imaging/adverse effects , Mice , Radiation Dosage , Radiation Injuries, Experimental/etiology , Thorax/radiation effects
13.
Neoplasia ; 20(5): 524-532, 2018 05.
Article in English | MEDLINE | ID: mdl-29626752

ABSTRACT

Desmoplastic Small Round Cell Tumor (DSRCT) is a rare sarcoma tumor of adolescence and young adulthood, which harbors a recurrent chromosomal translocation between the Ewing's sarcoma gene (EWSR1) and the Wilms' tumor suppressor gene (WT1). Patients usually develop multiple abdominal tumors with liver and lymph node metastasis developing later. Survival is poor using a multimodal therapy that includes chemotherapy, radiation and surgical resection, new therapies are needed for better management of DSRCT. Triggering cell apoptosis is the scientific rationale of many cancer therapies. Here, we characterized for the first time the expression of pro-apoptotic receptors, tumor necrosis-related apoptosis-inducing ligand receptors (TRAILR1-4) within an established human DSRCT cell line and clinical samples. The molecular induction of TRAIL-mediated apoptosis using agonistic small molecule, ONC201 in vitro cell-based proliferation assay and in vivo novel orthotopic xenograft animal models of DSRCT, was able to inhibit cell proliferation that was associated with caspase activation, and tumor growth, indicating that a cell-based delivery of an apoptosis-inducing factor could be relevant therapeutic agent to control DSRCT.


Subject(s)
Desmoplastic Small Round Cell Tumor/drug therapy , Heterocyclic Compounds, 4 or More Rings/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Desmoplastic Small Round Cell Tumor/metabolism , Humans , Imidazoles , Male , Mice , Pyridines , Pyrimidines , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Sarcoma/drug therapy , Sarcoma/metabolism , WT1 Proteins/genetics
14.
Cell Rep ; 21(10): 2785-2795, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29212026

ABSTRACT

Angiogenesis inhibitors are important for cancer therapy, but clinically approved anti-angiogenic agents have shown only modest efficacy and can compromise wound healing. This necessitates the development of novel anti-angiogenesis therapies. Here, we show significantly increased EGFL6 expression in tumor versus wound or normal endothelial cells. Using a series of in vitro and in vivo studies with orthotopic and genetically engineered mouse models, we demonstrate the mechanisms by which EGFL6 stimulates tumor angiogenesis. In contrast to its antagonistic effects on tumor angiogenesis, EGFL6 blockage did not affect normal wound healing. These findings have significant implications for development of anti-angiogenesis therapies.


Subject(s)
Glycoproteins/metabolism , Neoplasm Proteins/metabolism , Peptides/metabolism , Animals , Blotting, Western , Calcium-Binding Proteins , Cell Adhesion Molecules , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/physiology , Chitosan/metabolism , Female , Glycoproteins/genetics , Humans , In Vitro Techniques , Integrins/genetics , Integrins/metabolism , Mice , Mice, Knockout , Nanoparticles/chemistry , Neoplasm Proteins/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Peptides/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Wound Healing/genetics , Wound Healing/physiology
15.
J Am Assoc Lab Anim Sci ; 54(5): 545-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26424253

ABSTRACT

We have designed a method for immobilizing the subjects of small-animal studies using a study group-specific 3D-printed immobilizer that significantly reduces interfraction rotational variation. A cone-beam CT scan acquired from a single specimen in a study group was used to create a 3D-printed immobilizer that can be used for all specimens in the same study group. 3D printing allows for the incorporation of study-specific features into the immobilizer design, including geometries suitable for use in MR and CT scanners, holders for fiducial markers, and anesthesia nose cones of various sizes. Using metrics of rotational setup variations, we compared the current setup in our small-animal irradiation system, a half-pipe bed, with the 3D-printed device. We also assessed translational displacement within the immobilizer. The printed design significantly reduced setup variation, with average reductions in rotational displacement of 76% ± 3% (1.57 to 0.37°) in pitch, 78% ± 3% (1.85 to 0.41°) in yaw, and 87% ± 3% (5.39 to 0.70°) in roll. Translational displacement within the printed immobilizer was less than 1.5 ± 0.3 mm. This method of immobilization allows for repeatable setup when using MR or CT scans for the purpose of radiotherapy, streamlines the workflow, and places little burden on the study subjects.


Subject(s)
Immobilization/veterinary , Mice , Animals , Cone-Beam Computed Tomography , Immobilization/instrumentation , Magnetic Resonance Imaging , Printing, Three-Dimensional , Radiotherapy/methods , Tomography, X-Ray Computed
16.
Am J Cancer Res ; 5(10): 3135-48, 2015.
Article in English | MEDLINE | ID: mdl-26693065

ABSTRACT

Lung adenocarcinoma is characterized by complex biology involving alterations at the genomic and protein expression levels. FGFR2 mutation and/or amplification are key drivers of disease progression and drug resistance in lung adenocarcinoma patients. These genetic alterations drive oncogenic downstream signalling due to the deregulated activity of the receptor. We have previously reported that wild type FGFR2 provides a binding site for which two proteins, Grb2 and Plcγ1, compete in a concentration-dependent manner. Metastasis and invasion ensue when Plcγ1 prevails on the receptor giving rise to oncogenic outcome in the absence of gene mutation/deletion. The effect of this signalling mechanism on FGFR2-driven lung adenocarcinoma has not previously been considered. In this study we show that fluctuation in the combinatorial expression levels of FGFR2, Grb2 and Plcγ1 modulates cell invasive properties, tumor formation and is linked to recurrence-free survival in 150 lung adenocarcinoma patients. High levels of expression of FGFR2 and Plcγ1 in a low background of Grb2 significantly correlates with poor prognosis. On the other hand, low levels of expression of FGFR2 and Plcγ1 in a high background of Grb2 correlates with favourable prognosis. This study defines the expression pattern of FGFR2, Plcγ1 and Grb2 as a novel prognostic marker in human lung adenocarcinoma. Thus, consideration of the Grb2 and Plcγ1-mediated mechanism of FGFR2 regulation will enhance the therapeutic targeting of aberrant FGFR2 activity to provide the much-needed improvement to the treatment regimen of this high mortality disease.

17.
Nat Commun ; 6: 7530, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26179207

ABSTRACT

Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumorigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programmes by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anticancer metabolism therapy development in future.


Subject(s)
14-3-3 Proteins/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Energy Metabolism/genetics , Exoribonucleases/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/metabolism , 14-3-3 Proteins/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Disease-Free Survival , Exoribonucleases/metabolism , Female , Gene Knockout Techniques , Glutamine/metabolism , Glycolysis/genetics , HCT116 Cells , Humans , Middle Aged , Organelle Biogenesis , Prognosis , Proteolysis , Ubiquitination/genetics , Young Adult
18.
Genes Dev ; 19(21): 2560-70, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16264192

ABSTRACT

Werner Syndrome (WS) is characterized by premature aging, genomic instability, and cancer. The combined impact of WRN helicase deficiency and limiting telomere reserves is central to disease pathogenesis. Here, we report that cells doubly deficient for telomerase and WRN helicase show chromosomal aberrations and elevated recombination rates between telomeres of sister chromatids. Somatic reconstitution of WRN function, but not a WRN helicase-deficient mutant, abolished telomere sister chromatid exchange (T-SCE), indicating that WRN normally represses T-SCEs. Elevated T-SCE was associated with greater immortalization potential and resultant tumors maintained telomeres via the alternative lengthening of telomere (ALT) pathway. We propose that the increased incidence of chromosomal instability and cancer in WS relates in part to aberrant recombinations between sister chromatids at telomeres, which facilitates the activation of ALT and engenders cancer-relevant chromosomal aberrations and tumor formation.


Subject(s)
Cellular Senescence/genetics , Chromatids/metabolism , DNA Helicases/deficiency , Recombination, Genetic/genetics , Telomere/metabolism , Animals , Cell Line , Chromatids/genetics , Chromosomal Instability/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , Humans , Mice , Neoplasms/etiology , Neoplasms/genetics , Neoplasms/metabolism , RecQ Helicases , Werner Syndrome/complications , Werner Syndrome/genetics , Werner Syndrome/metabolism , Werner Syndrome Helicase
SELECTION OF CITATIONS
SEARCH DETAIL