Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Gastroenterology ; 149(4): 1017-29.e3, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26116798

ABSTRACT

BACKGROUND & AIMS: Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. METHODS: We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. RESULTS: In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. CONCLUSION: The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms/diagnosis , Drug Resistance, Neoplasm , Genetic Testing , Germ-Line Mutation , Lymphocytes/drug effects , Microsatellite Instability , Neoplastic Syndromes, Hereditary/diagnosis , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Adult , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Caco-2 Cells , Case-Control Studies , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mutational Analysis , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Female , Genetic Predisposition to Disease , Genetic Testing/methods , HCT116 Cells , Heredity , Humans , Lymphocytes/metabolism , Male , Methylation , Mismatch Repair Endonuclease PMS2 , Multiplex Polymerase Chain Reaction , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , Neoplastic Syndromes, Hereditary/drug therapy , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/metabolism , Neoplastic Syndromes, Hereditary/pathology , Nuclear Proteins/genetics , Phenotype , Predictive Value of Tests , Reproducibility of Results , Transfection , Young Adult
2.
Biomolecules ; 12(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36291559

ABSTRACT

Colorectal cancer (CRC) in adolescents and young adults (AYA) is very rare. Known predisposition syndromes include Lynch syndrome (LS) due to highly penetrant MLH1 and MSH2 alleles, familial adenomatous polyposis (FAP), constitutional mismatch-repair deficiency (CMMRD), and polymerase proofreading-associated polyposis (PPAP). Yet, 60% of AYA-CRC cases remain unexplained. In two teenage siblings with multiple adenomas and CRC, we identified a maternally inherited heterozygous PMS2 exon 12 deletion, NM_000535.7:c.2007-786_2174+493del1447, and a paternally inherited POLD1 variant, NP_002682.2:p.Asp316Asn. Comprehensive molecular tumor analysis revealed ultra-mutation (>100 Mut/Mb) and a large contribution of COSMIC signature SBS20 in both siblings' CRCs, confirming their predisposition to AYA-CRC results from a high propensity for somatic MMR deficiency (MMRd) compounded by a constitutional Pol δ proofreading defect. COSMIC signature SBS20 as well as SBS26 in the index patient's CRC were associated with an early mutation burst, suggesting MMRd was an early event in tumorigenesis. The somatic second hits in PMS2 were through loss of heterozygosity (LOH) in both tumors, suggesting PPd-independent acquisition of MMRd. Taken together, these patients represent the first cases of cancer predisposition due to heterozygous variants in PMS2 and POLD1. Analysis of their CRCs supports that POLD1-mutated tumors acquire hypermutation only with concurrent MMRd.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Adolescent , Humans , Young Adult , Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Syndrome
3.
Eur J Hum Genet ; 16(1): 62-72, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17851451

ABSTRACT

Heterozygous germline mutations in mismatch repair (MMR) genes MLH1, PMS2, MSH2, and MSH6 cause Lynch syndrome. New studies have indicated that biallelic mutations lead to a distinctive syndrome, childhood cancer syndrome (CCS), with haematological malignancies and tumours of brain and bowel early in childhood, often associated with signs of neurofibromatosis type 1. We provide further evidence for CCS reporting on six children from two consanguineous families carrying homozygous PMS2 germline mutations. In family 1, all four children had the homozygous p.I590Xfs mutation. Two had a glioblastoma at the age of 6 years and one of them had three additional Lynch-syndrome associated tumours at 15. Another sibling suffered from a glioblastoma at age 9, and the fourth sibling had infantile myofibromatosis at 1. In family 2, two of four siblings were homozygous for the p.G271V mutation. One had two colorectal cancers diagnosed at ages 13 and 14, the other had a Non-Hodgkin's lymphoma and a colorectal cancer at ages 10 and 11, respectively. All children with malignancies had multiple café-au-lait spots. After reviewing published cases of biallelic MMR gene mutations, we provide a concise description of CCS, revealing similarities in age distribution with carriers of heterozygous MMR gene mutations.


Subject(s)
Adenosine Triphosphatases/genetics , Brain Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Germ-Line Mutation , Hematologic Neoplasms/genetics , Neoplastic Syndromes, Hereditary/genetics , Neurofibromatosis 1/genetics , Adolescent , Age of Onset , Child , Consanguinity , DNA Mismatch Repair , Female , Germany , Glioblastoma/genetics , Homozygote , Humans , Infant , Male , Mismatch Repair Endonuclease PMS2 , Pedigree , Syndrome , Turkey/ethnology
SELECTION OF CITATIONS
SEARCH DETAIL