Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nature ; 598(7879): 167-173, 2021 10.
Article in English | MEDLINE | ID: mdl-34616065

ABSTRACT

Neuronal cell types are classically defined by their molecular properties, anatomy and functions. Although recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain1, neuronal cell types are often studied out of the context of their anatomical properties. To improve our understanding of the relationship between molecular and anatomical features that define cortical neurons, here we combined retrograde labelling with single-nucleus DNA methylation sequencing to link neural epigenomic properties to projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical and cortico-subcortical long-distance projections. Our results showed unique epigenetic signatures of projection neurons that correspond to their laminar and regional location and projection patterns. On the basis of their epigenomes, intra-telencephalic cells that project to different cortical targets could be further distinguished, and some layer 5 neurons that project to extra-telencephalic targets (L5 ET) formed separate clusters that aligned with their axonal projections. Such separation varied between cortical areas, which suggests that there are area-specific differences in L5 ET subtypes, which were further validated by anatomical studies. Notably, a population of cortico-cortical projection neurons clustered with L5 ET rather than intra-telencephalic neurons, which suggests that a population of L5 ET cortical neurons projects to both targets. We verified the existence of these neurons by dual retrograde labelling and anterograde tracing of cortico-cortical projection neurons, which revealed axon terminals in extra-telencephalic targets including the thalamus, superior colliculus and pons. These findings highlight the power of single-cell epigenomic approaches to connect the molecular properties of neurons with their anatomical and projection properties.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Epigenome , Epigenomics , Neural Pathways , Neurons/classification , Neurons/metabolism , Animals , Brain Mapping , Female , Male , Mice , Neurons/cytology
2.
J Neurosci ; 42(24): 4769-4773, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705494

ABSTRACT

Women have been contributing to the field of neuroscience since its inception, but their accomplishments are often overlooked. Lack of recognition, among other issues, has led to progressively fewer women at each academic stage; although half of neuroscience graduate students are women, women comprise less than one-third of neuroscience faculty, and even fewer full professors. Those who reach this level continue to struggle to get their work recognized. Women from historically excluded backgrounds are even more starkly underrepresented and face added challenges related to racial, ethnic, and other biases. To increase the visibility of women in neuroscience, promote their voices, and learn about their career journeys, we created Stories of Women in Neuroscience (Stories of WiN). Stories of WiN shares the scientific and personal stories of women neuroscientists with diverse backgrounds, identities, research interests, and at various career stages. From >70 women highlighted thus far, a major theme has emerged: there is not a single archetype of a woman neuroscientist, nor a single path to "success." Yet, through these diverse experiences run common threads, such as the importance of positive early research experiences, managing imposter syndrome, the necessity of work-life balance, and the challenges of fitting into-or resisting-the "scientist mold" within a patriarchal, racialized academic system. These commonalities reveal important considerations for supporting women neuroscientists. Through the lens of women highlighted by Stories of WiN, we explore the similarities among their journeys and detail specific actionable items to help encourage, support, and sustain women in neuroscience.


Subject(s)
Anxiety Disorders , Neurosciences , Ethnicity , Female , Humans , Male , Racial Groups , Self Concept
3.
Proc Natl Acad Sci U S A ; 117(23): 13066-13077, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32461374

ABSTRACT

Layer 6 (L6) is the sole purveyor of corticothalamic (CT) feedback to first-order thalamus and also sends projections to higher-order thalamus, yet how it engages the full corticothalamic circuit to contribute to sensory processing in an awake animal remains unknown. We sought to elucidate the functional impact of L6CT projections from the primary visual cortex to the dorsolateral geniculate nucleus (first-order) and pulvinar (higher-order) using optogenetics and extracellular electrophysiology in awake mice. While sustained L6CT photostimulation suppresses activity in both visual thalamic nuclei in vivo, moderate-frequency (10 Hz) stimulation powerfully facilitates thalamic spiking. We show that each stimulation paradigm differentially influences the balance between monosynaptic excitatory and disynaptic inhibitory corticothalamic pathways to the dorsolateral geniculate nucleus and pulvinar, as well as the prevalence of burst versus tonic firing. Altogether, our results support a model in which L6CTs modulate first- and higher-order thalamus through parallel excitatory and inhibitory pathways that are highly dynamic and context-dependent.


Subject(s)
Geniculate Bodies/physiology , Pulvinar/physiology , Visual Cortex/physiology , Animals , Electric Stimulation , Electrodes, Implanted , Female , Male , Mice , Microelectrodes , Optogenetics , Stereotaxic Techniques , Visual Pathways
4.
Nat Neurosci ; 25(3): 330-344, 2022 03.
Article in English | MEDLINE | ID: mdl-35260862

ABSTRACT

The ability to accurately determine when to perform an action is a fundamental brain function and vital to adaptive behavior. The behavioral mechanism and neural circuit for action timing, however, remain largely unknown. Using a new, self-paced action timing task in mice, we found that deprivation of auditory, but not somatosensory or visual input, disrupts learned action timing. The hearing effect was dependent on the auditory feedback derived from the animal's own actions, rather than passive environmental cues. Neuronal activity in the secondary auditory cortex was found to be both correlated with and necessary for the proper execution of learned action timing. Closed-loop, action-dependent optogenetic stimulation of the specific task-related neuronal population within the secondary auditory cortex rescued the key features of learned action timing under auditory deprivation. These results unveil a previously underappreciated sensorimotor mechanism in which the secondary auditory cortex transduces self-generated audiomotor feedback to control action timing.


Subject(s)
Auditory Cortex , Acoustic Stimulation , Animals , Auditory Cortex/physiology , Cues , Feedback, Sensory/physiology , Hearing , Learning , Mice
5.
Curr Biol ; 31(23): 5121-5137.e7, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34614389

ABSTRACT

Higher-order (HO) thalamic nuclei interact extensively and reciprocally with the cerebral cortex. These corticothalamic (CT) interactions are thought to be important for sensation and perception, attention, and many other important brain functions. CT projections to HO thalamic nuclei, such as the visual pulvinar, originate from two different excitatory populations in cortical layers 5 and 6, whereas first-order nuclei (such as the dorsolateral geniculate nucleus; dLGN) only receive layer 6 CT input. It has been proposed that these layer 5 and layer 6 CT pathways have different functional influences on the HO thalamus, but this has never been directly tested. By optogenetically inactivating different CT populations in the primary visual cortex (V1) and recording single-unit activity from V1, dLGN, and pulvinar of awake mice, we demonstrate that layer 5, but not layer 6, CT projections drive visual responses in the pulvinar, even while both pathways provide retinotopic, baseline excitation to their thalamic targets. Inactivating the superior colliculus also suppressed visual responses in the same subregion of the pulvinar, demonstrating that cortical layer 5 and subcortical inputs both contribute to HO visual thalamic activity-even at the level of putative single neurons. Altogether, these results indicate a functional division of "driver" and "modulator" CT pathways from V1 to the visual thalamus in vivo.


Subject(s)
Pulvinar , Visual Cortex , Animals , Geniculate Bodies/physiology , Mice , Pulvinar/physiology , Superior Colliculi/physiology , Visual Cortex/physiology , Visual Pathways/physiology
6.
Front Neurosci ; 9: 453, 2015.
Article in English | MEDLINE | ID: mdl-26648841

ABSTRACT

Impairment in social interactions is a primary characteristic of people diagnosed with autism spectrum disorder (ASD). Although these individuals tend to orient less to naturalistic social cues than do typically developing (TD) individuals, laboratory experiments testing social orienting in ASD have been inconclusive, possibly because of a failure to fully isolate reflexive (stimulus-driven) and voluntary (goal-directed) social orienting processes. The purpose of the present study was to separately examine potential reflexive and/or voluntary social orienting differences in individuals with ASD relative to TD controls. Subjects (ages 7-14) with high-functioning ASD and a matched control group completed three gaze cueing tasks on an iPad in which individuals briefly saw a face with averted gaze followed by a target after a variable delay. Two tasks were 100% predictive with either all congruent (target appears in gaze direction) or all incongruent (target appears opposite from gaze direction) trials, respectively. Another task was non-predictive with these same trials (half congruent and half incongruent) intermixed randomly. Response times (RTs) to the target were used to calculate reflexive (incongruent condition RT-congruent condition RT) and voluntary (non-predictive condition RT-predictive condition RT) gaze cueing effects. Subjects also completed two additional non-social orienting tasks (ProPoint and AntiPoint). Subjects with ASD demonstrate intact reflexive but deficient voluntary gaze following. Similar results were found in a separate test of non-social orienting. This suggests problems with using social cues, but only in a goal-directed fashion, in our sample of high-functioning individuals with ASD. Such findings may not only explain inconclusive previous findings but more importantly be critical for understanding social dysfunctions in ASD and for developing future interventions.

SELECTION OF CITATIONS
SEARCH DETAIL