Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Infect Dis ; 229(3): 743-752, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38349333

ABSTRACT

BACKGROUND: The histone deacetylase inhibitor vorinostat (VOR) can reverse human immunodeficiency virus type 1 (HIV-1) latency in vivo and allow T cells to clear infected cells in vitro. HIV-specific T cells (HXTCs) can be expanded ex vivo and have been safely administered to people with HIV (PWH) on antiretroviral therapy. METHODS: Six PWH received infusions of 2 × 107 HXTCs/m² with VOR 400 mg, and 3 PWH received infusions of 10 × 107 HXTCs/m² with VOR. The frequency of persistent HIV by multiple assays including quantitative viral outgrowth assay (QVOA) of resting CD4+ T cells was measured before and after study therapy. RESULTS: VOR and HXTCs were safe, and biomarkers of serial VOR effect were detected, but enhanced antiviral activity in circulating cells was not evident. After 2 × 107 HXTCs/m² with VOR, 1 of 6 PWH exhibited a decrease in QVOA, and all 3 PWH exhibited such declines after 10 × 107 HXTCs/m² and VOR. However, most declines did not exceed the 6-fold threshold needed to definitively attribute decline to the study intervention. CONCLUSIONS: These modest effects provide support for the strategy of HIV latency reversal and reservoir clearance, but more effective interventions are needed to yield the profound depletion of persistent HIV likely to yield clinical benefit. Clinical Trials Registration. NCT03212989.


Subject(s)
HIV Infections , HIV-1 , Humans , Vorinostat/therapeutic use , Vorinostat/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , CD4-Positive T-Lymphocytes , Cell- and Tissue-Based Therapy , Virus Latency
2.
Antimicrob Agents Chemother ; 68(7): e0020124, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38829049

ABSTRACT

Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Infections , HIV-1 , Histone Deacetylase Inhibitors , Nanoparticles , Virus Latency , tat Gene Products, Human Immunodeficiency Virus , Virus Latency/drug effects , Humans , tat Gene Products, Human Immunodeficiency Virus/genetics , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , HIV-1/drug effects , HIV-1/genetics , Histone Deacetylase Inhibitors/pharmacology , HIV Infections/drug therapy , HIV Infections/virology , RNA, Messenger/genetics , RNA, Messenger/metabolism , HIV Antigens/genetics , Anti-HIV Agents/pharmacology
3.
J Virol ; 97(11): e0070523, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37843370

ABSTRACT

IMPORTANCE: The lack of a reliable method to accurately detect when replication-competent HIV has been cleared is a major challenge in developing a cure. This study introduces a new approach called the HIVepsilon-seq (HIVε-seq) assay, which uses long-read sequencing technology and bioinformatics to scrutinize the HIV genome at the nucleotide level, distinguishing between defective and intact HIV. This study included 30 participants on antiretroviral therapy, including 17 women, and was able to discriminate between defective and genetically intact viruses at the single DNA strand level. The HIVε-seq assay is an improvement over previous methods, as it requires minimal sample, less specialized lab equipment, and offers a shorter turnaround time. The HIVε-seq assay offers a promising new tool for researchers to measure the intact HIV reservoir, advancing efforts towards finding a cure for this devastating disease.


Subject(s)
HIV Infections , HIV , Proviruses , Female , Humans , CD4-Positive T-Lymphocytes , DNA, Viral/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/virology , Nucleotides , Proviruses/genetics , Viral Load , Sequence Analysis, DNA , Male , Sex Factors , HIV/genetics
4.
J Infect Dis ; 225(5): 856-861, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34562096

ABSTRACT

We tested the combination of a broadly neutralizing HIV antibody with the latency reversal agent vorinostat (VOR). Eight participants received 2 month-long cycles of VRC07-523LS with VOR. Low-level viremia, resting CD4+ T-cell-associated HIV RNA (rca-RNA) was measured, and intact proviral DNA assay (IPDA) and quantitative viral outgrowth assay (QVOA) were performed at baseline and posttreatment. In 3 participants, IPDA and QVOA declines were accompanied by significant declines of rca-RNA. However, no IPDA or QVOA declines clearly exceeded assay variance or natural decay. Increased resistance to VRC07-523LS was not observed. This combination therapy did not reduce viremia or the HIV reservoir. Clinical Trials Registration. NCT03803605.


Subject(s)
HIV Infections , HIV-1 , Broadly Neutralizing Antibodies , CD4-Positive T-Lymphocytes , HIV-1/genetics , Humans , Viremia/drug therapy , Virus Latency , Vorinostat/therapeutic use
5.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33361426

ABSTRACT

The HIV proviral reservoir is the major barrier to cure. The predominantly replication-defective proviral landscape makes the measurement of virus that is likely to cause rebound upon antiretroviral therapy (ART)-cessation challenging. To address this issue, novel assays to measure intact HIV proviruses have been developed. The intact proviral DNA assay (IPDA) is a high-throughput assay that uses two probes to exclude the majority of defective proviruses and determine the frequency of intact proviruses, albeit without sequence confirmation. Quadruplex PCR with four probes (Q4PCR) is a lower-throughput assay that uses limiting dilution long-distance PCR amplification followed by quantitative PCR (qPCR) and near-full-length genome sequencing (nFGS) to estimate the frequency of sequence-confirmed intact proviruses and provide insight into their clonal composition. To explore the advantages and limitations of these assays, we compared IPDA and Q4PCR measurements from 39 ART-suppressed people living with HIV. We found that IPDA and Q4PCR measurements correlated with one another, but frequencies of intact proviral DNA differed by approximately 19-fold. This difference may be in part due to inefficiencies in long-distance PCR amplification of proviruses in Q4PCR, leading to underestimates of intact proviral frequencies. In addition, nFGS analysis within Q4PCR explained that some of this difference is explained by proviruses that are classified as intact by IPDA but carry defects elsewhere in the genome. Taken together, this head-to-head comparison of novel intact proviral DNA assays provides important context for their interpretation in studies to deplete the HIV reservoir and shows that together the assays bracket true reservoir size.IMPORTANCE The intact proviral DNA assay (IPDA) and quadruplex PCR (Q4PCR) represent major advances in accurately quantifying and characterizing the replication-competent HIV reservoir. This study compares the two novel approaches for measuring intact HIV proviral DNA in samples from 39 antiretroviral therapy (ART)-suppressed people living with HIV, thereby informing ongoing efforts to deplete the HIV reservoir in cure-related trials.


Subject(s)
HIV Infections/virology , HIV-1/genetics , Molecular Diagnostic Techniques/methods , Proviruses/genetics , Anti-Retroviral Agents/therapeutic use , Base Sequence , CD4-Positive T-Lymphocytes/virology , DNA, Viral/genetics , Genes, env/genetics , Genome, Viral/genetics , HIV Infections/drug therapy , HIV-1/isolation & purification , HIV-1/physiology , Polymerase Chain Reaction , Polymorphism, Genetic , Proviruses/isolation & purification , Proviruses/physiology , Viral Load , Viral Packaging Sequence/genetics , Virus Latency
6.
J Infect Dis ; 224(1): 92-100, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33216132

ABSTRACT

BACKGROUND: The replication-competent human immunodeficiency virus (HIV) reservoir is the major barrier to cure. The quantitative viral outgrowth assay (QVOA), the gold-standard method to quantify replication-competent HIV, is resource intensive, which limits its application in large clinical trials. The intact proviral DNA assay (IPDA) requires minimal cell input relative to QVOA and quantifies both defective and intact proviral HIV DNA, the latter potentially serving as a surrogate marker for replication-competent provirus. However, there are limited cross-sectional and longitudinal data on the relationship between IPDA and QVOA measurements. METHODS: QVOA and IPDA measurements were performed on 156 resting CD4 T-cell (rCD4) samples from 83 antiretroviral therapy-suppressed HIV-positive participants. Longitudinal QVOA and IPDA measurements were performed on rCD4 from 29 of these participants. RESULTS: Frequencies of intact, defective, and total proviruses were positively associated with frequencies of replication-competent HIV. Longitudinally, decreases in intact proviral frequencies were strikingly similar to that of replication-competent virus in most participants. In contrast, defective proviral DNA frequencies appeared relatively stable over time in most individuals. CONCLUSIONS: Changes in frequencies of IPDA-derived intact proviral DNA and replication-competent HIV measured by QVOA are similar. IPDA is a promising high-throughput approach to estimate changes in the frequency of the replication-competent reservoir.


Subject(s)
Anti-Retroviral Agents/therapeutic use , DNA, Viral/analysis , HIV/isolation & purification , Proviruses/isolation & purification , Adult , Cross-Sectional Studies , Female , HIV/drug effects , HIV/growth & development , Humans , Longitudinal Studies , Male , Middle Aged , Proviruses/growth & development , Retrospective Studies
7.
J Infect Dis ; 222(11): 1843-1852, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32496542

ABSTRACT

BACKGROUND: Persistent HIV infection of long-lived resting CD4 T cells, despite antiretroviral therapy (ART), remains a barrier to HIV cure. Women have a more robust type 1 interferon response during HIV infection relative to men, contributing to lower initial plasma viremia. As lower viremia during acute infection is associated with reduced frequency of latent HIV infection, we hypothesized that women on ART would have a lower frequency of latent HIV compared to men. METHODS: ART-suppressed, HIV seropositive women (n = 22) were matched 1:1 to 22 of 39 ART-suppressed men. We also compared the 22 women to all 39 men, adjusting for age and race as covariates. We measured the frequency of latent HIV using the quantitative viral outgrowth assay, the intact proviral DNA assay, and total HIV gag DNA. We also performed activation/exhaustion immunophenotyping on peripheral blood mononuclear cells and quantified interferon-stimulated gene (ISG) expression in CD4 T cells. RESULTS: We did not observe evident sex differences in the frequency of persistent HIV in resting CD4 T cells. Immunophenotyping and CD4 T-cell ISG expression analysis revealed marginal differences across the sexes. CONCLUSIONS: Differences in HIV reservoir frequency and immune activation appear to be small across sexes during long-term suppressive therapy.


Subject(s)
Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , Virus Latency , Adult , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cross-Sectional Studies , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Expression , HIV-1/genetics , Humans , Leukocytes, Mononuclear , Male , Middle Aged , Sex Factors
8.
Proc Natl Acad Sci U S A ; 112(44): 13645-50, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26483473

ABSTRACT

Elucidation of maternal immune correlates of protection against congenital cytomegalovirus (CMV) is necessary to inform future vaccine design. Here, we present a novel rhesus macaque model of placental rhesus CMV (rhCMV) transmission and use it to dissect determinants of protection against congenital transmission following primary maternal rhCMV infection. In this model, asymptomatic intrauterine infection was observed following i.v. rhCMV inoculation during the early second trimester in two of three rhCMV-seronegative pregnant females. In contrast, fetal loss or infant CMV-associated sequelae occurred in four rhCMV-seronegative pregnant macaques that were CD4(+) T-cell depleted at the time of inoculation. Animals that received the CD4(+) T-cell-depleting antibody also exhibited higher plasma and amniotic fluid viral loads, dampened virus-specific CD8(+) T-cell responses, and delayed production of autologous neutralizing antibodies compared with immunocompetent monkeys. Thus, maternal CD4(+) T-cell immunity during primary rhCMV infection is important for controlling maternal viremia and inducing protective immune responses that prevent severe CMV-associated fetal disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/prevention & control , Infectious Disease Transmission, Vertical , Maternal-Fetal Exchange , Animals , Antibodies, Viral/immunology , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/transmission , Disease Models, Animal , Female , Macaca mulatta , Pregnancy
9.
J Virol ; 87(13): 7218-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23616655

ABSTRACT

Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly underglycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets.


Subject(s)
Genetic Variation , HIV Infections/metabolism , HIV-1/metabolism , Receptors, CCR5/metabolism , T-Lymphocytes/virology , Viral Envelope Proteins/metabolism , Base Sequence , Cloning, Molecular , Cluster Analysis , Cohort Studies , Female , Glycosylation , HIV Infections/prevention & control , HIV Infections/transmission , Humans , Malawi , Male , Molecular Sequence Data , Neutralization Tests , Phylogeny , Protein Conformation , Receptors, CCR5/chemistry , Sequence Alignment , Sequence Analysis, DNA , Sex Factors , South Africa , T-Lymphocytes/immunology , Viral Envelope Proteins/genetics , Virus Replication/physiology
10.
J Virol ; 86(14): 7588-95, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22573869

ABSTRACT

Broadly neutralizing antibodies to the CD4 binding site (CD4bs) of gp120 are generated by some HIV-1-infected individuals, but little is known about the prevalence and evolution of this antibody response during the course of HIV-1 infection. We analyzed the sera of 113 HIV-1 seroconverters from three cohorts for binding to a panel of gp120 core proteins and their corresponding CD4bs knockout mutants. Among sera collected between 99 and 258 weeks post-HIV-1 infection, 88% contained antibodies to the CD4bs and 47% contained antibodies to resurfaced stabilized core (RSC) probes that react preferentially with broadly neutralizing CD4bs antibodies (BNCD4), such as monoclonal antibodies (MAbs) VRC01 and VRC-CH31. Analysis of longitudinal serum samples from a subset of 18 subjects revealed that CD4bs antibodies to gp120 arose within the first 4 to 16 weeks of infection, while the development of RSC-reactive antibodies was more varied, occurring between 10 and 152 weeks post-HIV-1 infection. Despite the presence of these antibodies, serum neutralization mediated by RSC-reactive antibodies was detected in sera from only a few donors infected for more than 3 years. Thus, CD4bs antibodies that bind a VRC01-like epitope are often induced during HIV-1 infection, but the level and potency required to mediate serum neutralization may take years to develop. An improved understanding of the immunological factors associated with the development and maturation of neutralizing CD4bs antibodies during HIV-1 infection may provide insights into the requirements for eliciting this response by vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Binding Sites, Antibody , CD4 Antigens/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/blood , CD4 Antigens/genetics , Female , Gene Knockout Techniques , HIV Antibodies/biosynthesis , HIV Antibodies/blood , HIV-1/pathogenicity , Humans , Male
11.
J Virol ; 86(12): 6835-46, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22514337

ABSTRACT

CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8(+) T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8(+) responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8(+) T cells during AHI. Autologous and heterologous CD8(+) T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8(+) T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8(+) antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8(+)-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8(+) T cell-mediated inhibition of virus replication. CD8(+) T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Down-Regulation , HIV Antigens/immunology , HIV Infections/virology , HIV-1/immunology , Virus Replication , Adult , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Cohort Studies , Female , HIV Antigens/genetics , HIV Infections/immunology , HIV-1/genetics , HIV-1/physiology , Humans , Male , Middle Aged , Young Adult
12.
bioRxiv ; 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36798291

ABSTRACT

Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.

13.
Front Immunol ; 14: 1219250, 2023.
Article in English | MEDLINE | ID: mdl-37744358

ABSTRACT

Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV Infections/drug therapy , Virus Activation , Virus Latency , Alendronate/therapeutic use , Alendronate/pharmacology
14.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37317962

ABSTRACT

Brain microglia (MG) may serve as a human immunodeficiency virus 1 (HIV) reservoir and ignite rebound viremia following cessation of antiretroviral therapy (ART), but they have yet to be proven to harbor replication-competent HIV. Here, we isolated brain myeloid cells (BrMCs) from nonhuman primates and rapid autopsy of people with HIV (PWH) on ART and sought evidence of persistent viral infection. BrMCs predominantly displayed microglial markers, in which up to 99.9% of the BrMCs were TMEM119+ MG. Total and integrated SIV or HIV DNA was detectable in the MG, with low levels of cell-associated viral RNA. Provirus in MG was highly sensitive to epigenetic inhibition. Outgrowth virus from parietal cortex MG in an individual with HIV productively infected both MG and PBMCs. This inducible, replication-competent virus and virus from basal ganglia proviral DNA were closely related but highly divergent from variants in peripheral compartments. Phenotyping studies characterized brain-derived virus as macrophage tropic based on the ability of the virus to infect cells expressing low levels of CD4. The lack of genetic diversity in virus from the brain suggests that this macrophage-tropic lineage quickly colonized brain regions. These data demonstrate that MG harbor replication-competent HIV and serve as a persistent reservoir in the brain.


Subject(s)
HIV Infections , HIV-1 , Animals , Humans , Microglia , Brain , Macrophages , Proviruses/genetics , HIV Infections/drug therapy
15.
J Clin Invest ; 132(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35426377

ABSTRACT

Latency reversal strategies for HIV cure using inhibitor of apoptosis protein (IAP) antagonists (IAPi) induce unprecedented levels of latent reservoir expression without immunotoxicity during suppressive antiretroviral therapy (ART). However, full targeting of the reservoir may require combinatorial approaches. A Jurkat latency model screen for IAPi combination partners demonstrated synergistic latency reversal with bromodomain (BD) and extraterminal domain protein inhibitors (BETi). Mechanistic investigations using CRISPR-CAS9 and single-cell RNA-Seq informed comprehensive ex vivo evaluations of IAPi plus pan-BET, bD-selective BET, or selective BET isoform targeting in CD4+ T cells from ART-suppressed donors. IAPi+BETi treatment resulted in striking induction of cell-associated HIV gag RNA, but lesser induction of fully elongated and tat-rev RNA compared with T cell activation-positive controls. IAPi+BETi resulted in HIV protein induction in bulk cultures of CD4+ T cells using an ultrasensitive p24 assay, but did not result in enhanced viral outgrowth frequency using a standard quantitative viral outgrowth assay. This study defines HIV transcriptional elongation and splicing as important barriers to latent HIV protein expression following latency reversal, delineates the roles of BET proteins and their BDs in HIV latency, and provides a rationale for exploration of IAPi+BETi in animal models of HIV latency.


Subject(s)
HIV Infections , HIV-1 , Animals , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , HIV Infections/genetics , HIV-1/physiology , Human Immunodeficiency Virus Proteins , NF-kappa B/genetics , NF-kappa B/metabolism , Nuclear Proteins/metabolism , RNA , Transcription Factors/metabolism , Virus Activation , Virus Latency
16.
Proc Natl Acad Sci U S A ; 105(21): 7552-7, 2008 May 27.
Article in English | MEDLINE | ID: mdl-18490657

ABSTRACT

The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.


Subject(s)
Disease Transmission, Infectious , Evolution, Molecular , HIV Infections/transmission , HIV Infections/virology , HIV-1/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , AIDS Vaccines/immunology , Base Sequence , Genetic Variation , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/isolation & purification , HIV-1/physiology , Humans , Models, Biological , Molecular Sequence Data , Mutation , Phylogeny , RNA, Viral/blood , RNA, Viral/genetics , Receptors, CCR5/metabolism , Sequence Analysis, RNA , env Gene Products, Human Immunodeficiency Virus/immunology
17.
J Virol ; 83(8): 3617-25, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19193787

ABSTRACT

The broadly neutralizing human monoclonal antibodies (MAbs) 2F5 and 4E10, both targeting the highly conserved human immunodeficiency virus type 1 (HIV-1) envelope membrane proximal external region (MPER), are among the MAbs with the broadest heterologous neutralizing activity and are of considerable interest for HIV-1 vaccine development. We have identified serum antibodies from an HIV-infected subject that both were broadly neutralizing and specifically targeted MPER epitopes that overlap the 2F5 epitope. These MPER-specific antibodies were made 15 to 20 months following transmission and concomitantly with the development of autoantibodies. Our findings suggest that multiple events (i.e., genetic predisposition and HIV-1 immune dysregulation) may be required for induction of broadly reactive gp41 MPER antibodies in natural infection.


Subject(s)
Epitopes/immunology , HIV Antibodies/blood , HIV Antibodies/immunology , HIV Envelope Protein gp41/immunology , HIV Infections/immunology , HIV-1/immunology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Female , HIV Infections/virology , Humans , Molecular Sequence Data , Neutralization Tests , Time Factors
18.
ACS Infect Dis ; 6(7): 1719-1733, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32347704

ABSTRACT

A hallmark of human immunodeficiency type-1 (HIV) infection is the integration of the viral genome into host chromatin, resulting in a latent reservoir that persists despite antiviral therapy or immune response. Thus, key priorities toward eradication of HIV infection are to understand the mechanisms that allow HIV latency and to develop latency reversal agents (LRAs) that can facilitate the clearance of latently infected cells. The repressive H3K27me3 histone mark, catalyzed by the PRC2 complex, plays a pivotal role in transcriptional repression at the viral promoter in both cell line and primary CD4+ T cell models of latency. EZH2 inhibitors which block H3K27 methylation have been shown to act as LRAs, suggesting other PRC2 components could also be potential targets for latency reversal. EED, a core component of PRC2, ensures the propagation of H3K27me3 by allosterically activating EZH2 methyltransferase activity. Therefore, we sought to investigate if inhibition of EED would also reverse latency. Inhibitors of EED, EED226 and A-395, demonstrated latency reversal activity as single agents, and this activity was further enhanced when used in combination with other known LRAs. Loss of H3K27me3 following EED inhibition significantly increased the levels of H3K27 acetylation globally and at the HIV LTR. These results further confirm that PRC2 mediated repression plays a significant role in the maintenance of HIV latency and suggest that EED may serve as a promising new target for LRA development.


Subject(s)
HIV Infections , Polycomb Repressive Complex 2 , HIV Infections/drug therapy , Histones/metabolism , Humans , Methylation , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Protein Processing, Post-Translational
19.
Front Immunol ; 11: 1971, 2020.
Article in English | MEDLINE | ID: mdl-32849659

ABSTRACT

Quantifying the inducible HIV reservoir provides an estimate of the frequency of quiescent HIV-infected cells in humans as well as in animal models, and can help ascertain the efficacy of latency reversing agents (LRAs). The quantitative viral outgrowth assay (QVOA) is used to measure inducible, replication competent HIV and generate estimations of reservoir size. However, traditional QVOA is time and labor intensive and requires large amounts of lymphocytes. Given the importance of reproducible and accurate assessment of both reservoir size and LRA activity in cure strategies, efforts to streamline the QVOA are of high priority. We developed a modified QVOA, the Digital ELISA Viral Outgrowth or DEVO assay, with ultra-sensitive p24 readout, capable of femtogram detection of HIV p24 protein in contrast to the picogram limitations of traditional ELISA. For each DEVO assay, 8-12 × 106 resting CD4 + T cells from aviremic, ART-treated HIV + participants are plated in limiting dilution and maximally stimulated with PHA, IL-2 and uninfected allogeneic irradiated PBMC. CD8-depleted PHA blasts from an uninfected donor or HIV-permissive cells (e.g., Molt4/CCR5) are added to the cultures and virus allowed to amplify for 8-12 days. HIV p24 from culture supernatant is measured at day 8 by Simoa (single molecule array, ultra-sensitive p24 assay) confirmed at day 12, and infectious units per million CD4 + T cells (IUPM) are calculated using the maximum likelihood method. In all DEVO assays performed, HIV p24 was detected in the supernatant of cultures as early as 8 days post stimulation. Importantly, DEVO IUPM values at day 8 were comparable or higher than traditional QVOA IUPM values obtained at day 15. Interestingly, DEVO IUPM values were similar with or without the addition of allogeneic CD8-depleted target PHA blasts or HIV permissive cells traditionally used to expand virus. The DEVO assay uses fewer resting CD4 + T cells and provides an assessment of reservoir size in less time than standard QVOA. This assay offers a new platform to quantify replication competent HIV during limited cell availability. Other potential applications include evaluating LRA activity, and measuring clearance of infected cells during latency clearance assays.


Subject(s)
HIV Core Protein p24/metabolism , HIV Infections/diagnosis , HIV Infections/virology , HIV-1/physiology , Viral Load , Virus Replication , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Enzyme-Linked Immunosorbent Assay , HIV Infections/immunology , Humans , Sensitivity and Specificity
20.
Elife ; 92020 10 06.
Article in English | MEDLINE | ID: mdl-33021198

ABSTRACT

HIV-1-specific CD8+ T cells are an important component of HIV-1 curative strategies. Viral variants in the HIV-1 reservoir may limit the capacity of T cells to detect and clear virus-infected cells. We investigated the patterns of T cell escape variants in the replication-competent reservoir of 25 persons living with HIV-1 (PLWH) durably suppressed on antiretroviral therapy (ART). We identified all reactive T cell epitopes in the HIV-1 proteome for each participant and sequenced HIV-1 outgrowth viruses from resting CD4+ T cells. All non-synonymous mutations in reactive T cell epitopes were tested for their effect on the size of the T cell response, with a≥50% loss defined as an escape mutation. The majority (68%) of T cell epitopes harbored no detectable escape mutations. These findings suggest that circulating T cells in PLWH on ART could contribute to control of rebound and could be targeted for boosting in curative strategies.


Subject(s)
Anti-HIV Agents/pharmacology , CD4-Positive T-Lymphocytes/virology , HIV Infections/immunology , Virus Latency/drug effects , Adult , Aged , Cohort Studies , Epitopes/immunology , Female , HIV-1/drug effects , HIV-1/physiology , Humans , Male , Middle Aged , Mutation , Phylogeny , Viral Load/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL