Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Ecotoxicol Environ Saf ; 242: 113866, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35839529

ABSTRACT

This study focuses on the gas-particle (G-P) partitioning of 16 polycyclic aromatic hydrocarbons (PAHs) from oil combustion, which is one of the important contributors of anthropogenic PAHs but has been rarely studied. The combustions of different types of oils involving ultra-light to heavy oils were investigated, and the PAH partitioning mechanism was determined by the widely used Junge-Pankow adsorption model, Koa absorption model, and dual sorption model, respectively. The results show that the source-specific diagnostic ratios of Ant/(Ant+Phe) are between 0.09 and 0.24, the estimated regression slopes of G-P partition coefficients (KP) of the total PAHs on their sub-cooled liquid vapor pressures (PLO) are in the range of - 0.34 to - 0.25, and the predicted fractions of PAHs in the particle phase (φ) by Koa absorption model are close to the measured values, while the log KPvalues of the LMW PAHs from the combustions of diesel and heavy oil are better represented by the dual sorption model. Our findings indicate that PAHs are derived from mixed sources that include the unburned original oil and combustion products, and the PAH partitioning mechanism is governed by the process of absorption into organic matter because of the unburned oil, but both adsorption and absorption exist simultaneously in the lighter PAHs from the combustions of heavier oils (i.e., diesel and heavy oil). Based on these findings, the understanding of the fate and transport of PAH emissions and the optimization of the emergency responses to accidents such as marine oil spills would be potentially improved.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Adsorption , Air Pollutants/analysis , Environmental Monitoring/methods , Gases/analysis , Oils , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis
2.
Proc Natl Acad Sci U S A ; 115(18): 4589-4594, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29666257

ABSTRACT

Flexible photovoltaics with extreme mechanical compliance present appealing possibilities to power Internet of Things (IoT) sensors and wearable electronic devices. Although improvement in thermal stability is essential, simultaneous achievement of high power conversion efficiency (PCE) and thermal stability in flexible organic photovoltaics (OPVs) remains challenging due to the difficulties in maintaining an optimal microstructure of the active layer under thermal stress. The insufficient thermal capability of a plastic substrate and the environmental influences cannot be fully expelled by ultrathin barrier coatings. Here, we have successfully fabricated ultraflexible OPVs with initial efficiencies of up to 10% that can endure temperatures of over 100 °C, maintaining 80% of the initial efficiency under accelerated testing conditions for over 500 hours in air. Particularly, we introduce a low-bandgap poly(benzodithiophene-cothieno[3,4-b]thiophene) (PBDTTT) donor polymer that forms a sturdy microstructure when blended with a fullerene acceptor. We demonstrate a feasible way to adhere ultraflexible OPVs onto textiles through a hot-melt process without causing severe performance degradation.

3.
Mol Plant Microbe Interact ; 33(3): 474-487, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31721650

ABSTRACT

Plant resistance inducers (PRIs) are compounds that protect plants from diseases by activating immunity responses. Exogenous treatment with glutamate (Glu), an important amino acid for all living organisms, induces resistance against fungal pathogens in rice and tomato. To understand the molecular mechanisms of Glu-induced immunity, we used the Arabidopsis model system. We found that exogenous treatment with Glu induces resistance against pathogens in Arabidopsis. Consistent with this, transcriptome analyses of Arabidopsis seedlings showed that Glu significantly induces the expression of wound-, defense-, and stress-related genes. Interestingly, Glu activates the expression of genes induced by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns at much later time points than the flg22 peptide, which is a bacterial-derived PAMP. The Glu receptor-like (GLR) proteins GLR3.3 and GLR3.6 are involved in the early expression of Glu-inducible genes; however, the sustained expression of these genes does not require the GLR proteins. Glu-inducible gene expression is also not affected by mutations in genes that encode PAMP receptors (EFR, FLS2, and CERK1), regulators of pattern-triggered immunity (BAK1, BKK1, BIK1, and PBL1), or a salicylic acid biosynthesis enzyme (SID2). The treatment of roots with Glu activates the expression of PAMP-, salicylic acid-, and jasmonic acid-inducible genes in leaves. Moreover, the treatment of roots with Glu primes chitin-induced responses in leaves, possibly through transcriptional activation of LYSIN-MOTIF RECEPTOR-LIKE KINASE 5 (LYK5), which encodes a chitin receptor. Because Glu treatment does not cause discernible growth retardation, Glu can be used as an effective PRI.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/immunology , Glutamic Acid/pharmacology , Plant Immunity/drug effects , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Pathogen-Associated Molecular Pattern Molecules
4.
Mar Life Sci Technol ; 6(2): 349-362, 2024 May.
Article in English | MEDLINE | ID: mdl-38827135

ABSTRACT

Correlative species distribution models (SDMs) are important tools to estimate species' geographic distribution across space and time, but their reliability heavily relies on the availability and quality of occurrence data. Estimations can be biased when occurrences do not fully represent the environmental requirement of a species. We tested to what extent species' physiological knowledge might influence SDM estimations. Focusing on the Japanese sea cucumber Apostichopus japonicus within the coastal ocean of East Asia, we compiled a comprehensive dataset of occurrence records. We then explored the importance of incorporating physiological knowledge into SDMs by calibrating two types of correlative SDMs: a naïve model that solely depends on environmental correlates, and a physiologically informed model that further incorporates physiological information as priors. We further tested the models' sensitivity to calibration area choices by fitting them with different buffered areas around known presences. Compared with naïve models, the physiologically informed models successfully captured the negative influence of high temperature on A. japonicus and were less sensitive to the choice of calibration area. The naïve models resulted in more optimistic prediction of the changes of potential distributions under climate change (i.e., larger range expansion and less contraction) than the physiologically informed models. Our findings highlight benefits from incorporating physiological information into correlative SDMs, namely mitigating the uncertainties associated with the choice of calibration area. Given these promising features, we encourage future SDM studies to consider species physiological information where available. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00226-0.

5.
Sci Rep ; 12(1): 19691, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385273

ABSTRACT

As awareness of climate-related freshwater quality problems increases, more research is needed to better understand how climate impacts water quality. Climate has significant impacts on the mixing regime and nutrient status of lakes. However, the relationship between climatic variables, mixing regime, and nutrient status in large monomictic lakes requires further study. Here we applied a three-dimensional ecosystem model to the large monomictic Lake Biwa, where hypoxia had recurred over the past 60 years. The model was validated using monitoring data, and the relationships among mixing regime, nutrient status, and climatic variables have been investigated. The turnover timing, which represented the mixing regime, varied by 36 days and depended most on wind speed but least on air temperature. In the early period prior to waste-water treatment there was a strong linear relationship between phosphorus and deep-water dissolved oxygen (DO) concentrations. Following this period, the relationship weakened but remained significant. In addition, we find a weak relationship between turnover timing and deep-water DO concentrations. We suggest that later turnover timing may favor lower deep-water DO concentrations, which in turn may favor release of legacy nutrients from sediments. Although waste-water treatment has improved conditions in the lake, climate change induced alteration of turnover timing may adversely influence water quality. Maintaining water quality under continued warming may require more rigorous controls on phosphorus loading to the lake.


Subject(s)
Ecosystem , Lakes , Environmental Monitoring , Phosphorus/analysis , Nutrients/analysis
6.
Environ Sci Pollut Res Int ; 29(8): 11054-11075, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35028843

ABSTRACT

Aquaculture is remarkably one of the most promising industries among the food-producing industries in the world. Aquaculture production as well as fish consumption per capita have been dramatically increasing over the past two decades. Shifting of culture method from semi-intensive to intensive technique and applying of antibiotics to control the disease outbreak are the major factors for the increasing trend of aquaculture production. Antibiotics are usually present at subtherapeutic levels in the aquaculture environment, which increases the selective pressure to the resistant bacteria and stimulates resistant gene transfer in the aquatic environment. It is now widely documented that antibiotic resistance genes and resistant bacteria are transported from the aquatic environment to the terrestrial environment and may pose adverse effects on human and animal health. However, data related to antibiotic usage and bacterial resistance in aquaculture is very limited or even absent in major aquaculture-producing countries. In particular, residual levels of antibiotics in fish and shellfish are not well documented. Recently, some of the countries have already decided the maximum residue levels (MRLs) of antibiotics in fish muscle or skin; however, many antibiotics are yet not to be decided. Therefore, an urgent universal effort needs to be taken to monitor antibiotic concentration and resistant bacteria particularly multiple antibiotic-resistant bacteria and to assess the associated risks in aquaculture. Finally, we suggest to take an initiative to make a uniform antibiotic registration process, to establish the MRLs for fish/shrimp and to ensure the use of only aquaculture antibiotics in fish and shellfish farming globally.


Subject(s)
Anti-Bacterial Agents , Aquaculture , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Fishes , Humans
7.
Environ Monit Assess ; 165(1-4): 461-74, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19434505

ABSTRACT

To assess the environmental impacts of large floating structures, various physical, chemical, and biological parameters were measured. The current and water quality were monitored around a prototype floating structure called the Phase-II Mega-Float model (MF-II model), which was moored off Yokosuka in Tokyo Bay during the period 1999-2000. The effects of the MF-II model on the condition of the physical environment, e.g., the direction and flow rate of water currents and the stratification structure, were negligible. Analysis of water quality showed that the concentrations of chlorophyll a and nutrients only varied just below the MF-II model. However, such variations were localized to within 5 m below the MF-II model since the waters were exchanged because of the tidal current. The minor changes in water quality are attributable to the impedance of photosynthesis due to the sea-covering effect and the activities of sessile organisms fouling the bottom surface of the MF-II model.


Subject(s)
Environmental Monitoring/methods , Animals , Chlorophyll/analysis , Japan , Photosynthesis , Sunlight , Thoracica/growth & development , Water Movements
8.
Plant Cell Physiol ; 49(6): 891-900, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18420594

ABSTRACT

When the upper part of the main shoot of the Japanese morning glory (Pharbitis nil or Ipomoea nil) is bent down, the axillary bud situated on the uppermost node of the bending region is released from apical dominance and elongates. Here, we demonstrate that this release of axillary buds from apical dominance is gravity regulated. We utilized two agravitropic mutants of morning glory defective in gravisensing cell differentiation, weeping (we) and weeping2 (we2). Bending the main shoots of either we or we2 plants resulted in minimal elongation of their axillary buds. This aberration was genetically linked to the agravitropism phenotype of the mutants, which implied that shoot bending-induced release from apical dominance required gravisensing cells. Previous studies have shown that basipetal translocation of auxin from the apical bud inhibits axillary bud growth, whereas cytokinin promotes axillary bud outgrowth. We therefore compared the roles of auxin and cytokinin in bending- or decapitation-induced axillary bud growth. In the wild-type and we plants, decapitation increased cytokinin levels and reduced auxin response. In contrast, shoot bending did not cause significant changes in either cytokinin level or auxin response, suggesting that the mechanisms underlying gravity- and decapitation-regulated release from apical dominance are distinct and unique.


Subject(s)
Gravitropism , Ipomoea nil/growth & development , Ipomoea nil/metabolism , Base Sequence , Cytokinins/genetics , Cytokinins/pharmacology , Cytokinins/physiology , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/physiology , Genes, Plant , Genes, Reporter , Genetic Markers , Gravitropism/drug effects , Gravitropism/genetics , Indoleacetic Acids/pharmacology , Ipomoea nil/drug effects , Ipomoea nil/genetics , Molecular Sequence Data , Mutation , Plant Growth Regulators/genetics , Plant Growth Regulators/pharmacology , Plant Growth Regulators/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/growth & development
9.
J Mol Biol ; 352(4): 976-85, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-16125724

ABSTRACT

Bacteriophage Mu is a double-stranded DNA phage that consists of an icosahedral head, a contractile tail with baseplate and six tail fibers, similar to the well-studied T-even phages. The baseplate of bacteriophage Mu, which recognizes and attaches to a host cell during infection, consists of at least eight different proteins. The baseplate protein, gp44, is essential for bacteriophage Mu assembly and the generation of viable phages. To investigate the role of gp44 in baseplate assembly and infection, the crystal structure of gp44 was determined at 2.1A resolution by the multiple isomorphous replacement method. The overall structure of the gp44 trimer is similar to that of the T4 phage gp27 trimer, which forms the central hub of the T4 baseplate, although these proteins share very little primary sequence homology. Based on these data, we confirm that gp44 exists as a trimer exhibiting a hub-like structure with an inner diameter of 25A through which DNA can presumably pass during infection. The molecular surface of the gp44 trimer that abuts the host cell membrane is positively charged, and it is likely that Mu phage interacts with the membrane through electrostatic interactions mediated by gp44.


Subject(s)
Bacteriophage mu/ultrastructure , Protein Structure, Quaternary , Viral Proteins/chemistry , Viral Tail Proteins/chemistry , Amino Acid Sequence , Bacteriophage mu/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Viral Proteins/genetics , Viral Tail Proteins/genetics
10.
Mar Pollut Bull ; 110(1): 484-492, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27368928

ABSTRACT

With increasing concern over the aquatic environment in marine culture, the integrated multi-trophic aquaculture (IMTA) has received extensive attention in recent years. A three-dimensional numerical ocean model is developed to explore the negative impacts of aquaculture wastes and assess the bio-mitigation effect of IMTA systems on marine environments. Numerical results showed that the concentration of surface phytoplankton could be controlled by planting seaweed (a maximum reduction of 30%), and the percentage change in the improvement of bottom dissolved oxygen concentration increased to 35% at maximum due to the ingestion of organic wastes by sea cucumbers. Numerical simulations indicate that seaweeds need to be harvested in a timely manner for maximal absorption of nutrients, and the initial stocking density of sea cucumbers >3.9 individuals m(-2) is preferred to further eliminate the organic wastes sinking down to the sea bottom.


Subject(s)
Aquaculture/methods , Models, Theoretical , Sea Cucumbers , Seaweed , Animals , Environment , Food Chain , Japan , Oxygen/analysis , Phytoplankton , Population Density , Ulva
11.
J Biochem ; 137(5): 601-6, 2005 May.
Article in English | MEDLINE | ID: mdl-15944413

ABSTRACT

The gene product of gene 44 of Mu phage (gp44) is an essential protein for baseplate assembly and has been designated as gpP, a traditional genetic assignment. The function of gp44 during the assembly or infection process is not known. In the present study, we purified the recombinant gp44 and characterized it by analytical ultracentrifugation and differential scanning microcalorimetry. The results indicate that gp44 forms a trimer comprising a complex consisting of the 42 kDa and 40 kDa subunits that had been cleaved in the C-terminal region. Thermodynamic analysis also suggested that the C-terminal region forms a flexible domain.


Subject(s)
Bacteriophage mu/genetics , Genes, Viral , Viral Proteins/genetics , Viral Structural Proteins/genetics , Bacteriophage mu/metabolism , Bacteriophage mu/ultrastructure , Calorimetry, Differential Scanning , Protein Structure, Quaternary , Thermodynamics , Ultracentrifugation , Viral Proteins/biosynthesis , Viral Proteins/isolation & purification
12.
Article in English | MEDLINE | ID: mdl-16508104

ABSTRACT

Bacteriophage Mu baseplate protein gene product 44 (gp44) is an essential protein required for the assembly of viable phages. To investigate the roles of gp44 in baseplate assembly and infection, gp44 was crystallized at pH 6.0 in the presence of 20% 2-methyl-2,4-pentanediol. The crystals belong to space group R3, with unit-cell parameters a = b = 127.47, c = 63.97 A. The crystals diffract X-rays to at least 2.1 A resolution and are stable in the X-ray beam and are therefore appropriate for structure determination. Native data have been collected to 2.1 A resolution using a DIP6040 image-plate system at beamline BL44XU at the SPring-8 facility in Japan.


Subject(s)
Bacteriophage mu/genetics , Viral Structural Proteins/chemistry , Viral Structural Proteins/genetics , Crystallization , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Viral Structural Proteins/isolation & purification , X-Ray Diffraction
13.
Mar Pollut Bull ; 93(1-2): 130-43, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25727448

ABSTRACT

Particulate organic waste, originating from fish cultured in cages, often brings about negative effects on the structure of bottom sediments. These effects result in deterioration of the aquatic environment. In the present study, a three-dimensional numerical model was coupled with developed submodels of fish cage drag and aquaculture waste diffusion to simulate the hydrodynamic environment and distribution of particulate organic waste. Numerical simulation results showed that fish cages exerted an influence on both the velocity and direction of water current; the reduction of water current velocity was a maximum of approximately 38%. The contribution of fish fecal matter was dominant during winter (ca. 80%), whereas waste fish feed was the main source in other seasons. The distribution of organic waste near the sea bottom indicated that organic waste not only loaded mainly on the sea floor just beneath the fish cages but also diffused towards the coastlines.


Subject(s)
Aquaculture , Bays/chemistry , Environmental Monitoring/methods , Water Pollutants/analysis , Animals , Environment , Fishes , Japan , Water Pollution/statistics & numerical data
14.
Biol Sci Space ; 17(3): 183-4, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14676364

ABSTRACT

When the upper part of main shoot of morning glory (Pharbitis nil) is gently bent down, lateral bud on the bending region is released from apical dominance and starts to elongate. But, clinorotating the bending shoots prevents the release of the lateral bud from apical dominance. These results suggest that gravity affects apical dominance in morning glory. Here we verified the gravity-regulated apical dominance by using a weeping morning glory defective in gravitropic response due to abnormal differentiation of endodermis. That is, bending main shoot of the weeping morning glory hardly caused the lateral bud to elongate. In addition, decapitation of apical bud released the lateral bud from apical dominance, and exogenous auxin applied to the cut surface of the decapitated stem was inhibitory to the outgrowth of the lateral bud in the wild type. However, the effect of auxin was much less in the weeping morning glory. Thus, apical dominance of the weeping morning glory was weaker and less influenced by gravity than that of the wild type, which could occur due to abnormal differentiation of endodermis required for graviperception.


Subject(s)
Gravitation , Ipomoea/growth & development , Plant Shoots/growth & development , Flowers/drug effects , Flowers/growth & development , Indoleacetic Acids/pharmacology , Ipomoea/drug effects , Plant Growth Regulators/pharmacology , Plant Shoots/drug effects
15.
Proc Natl Acad Sci U S A ; 102(51): 18742-7, 2005 Dec 20.
Article in English | MEDLINE | ID: mdl-16339910

ABSTRACT

Circumnutation and winding in plants are universal growth movements that allow plants to survive despite their sessile nature. However, the detailed molecular mechanisms controlling these phenomena remain unclear. We previously found that a gravitropic mutant of Japanese morning glory (Pharbitis nil or Ipomoea nil), Shidare-asagao (weeping), is defective not only in circumnutation but also in the winding response. This phenotype is similar to that of the Arabidopsis SCARECROW (SCR) mutant. We therefore investigated whether morning glory SCR (PnSCR) is involved in the weeping phenotype. We found that one amino acid was inserted into the highly conserved VHIID motif in weeping-type PnSCR; this mutation caused abnormal endodermal differentiation. We introduced either the mutant or WT PnSCR into Arabidopsis scr mutants for complementation tests. PnSCR of the WT, but not of weeping, rescued the shoot gravitropism and circumnutation of scr. These results show that both the abnormal gravitropism and the circumnutation defect in weeping are attributable to a loss of PnSCR function. Thus, our data show that gravisensing endodermal cells are indispensable for shoot circumnutation and the winding response and that PnSCR is responsible for the abnormal phenotypes of weeping.


Subject(s)
Gravity Sensing/physiology , Ipomoea nil/cytology , Ipomoea nil/physiology , Plant Shoots/cytology , Plant Shoots/physiology , Amino Acid Sequence , Arabidopsis/genetics , Base Sequence , Genetic Complementation Test , Ipomoea nil/genetics , Ipomoea nil/growth & development , Molecular Sequence Data , Mutation/genetics , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL