Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biomech Eng ; 145(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-36562120

ABSTRACT

Trauma to the brain is a biomechanical problem where the initiating event is a dynamic loading (blunt, inertial, blast) to the head. To understand the relationship between the mechanical parameters of the injury and the spatial and temporal deformation patterns in the brain, there is a need to develop a reusable and adaptable experimental traumatic brain injury (TBI) model that can measure brain motion under varying parameters. In this effort, we aim to directly measure brain deformation (strain and strain rates) in different brain regions in a human head model using a drop tower. METHODS: Physical head models consisting of a half, sagittal plane skull, brain, and neck were constructed and subjected to crown and frontal impacts at two impact speeds. All tests were recorded with a high-speed camera at 1000 frames per second. Motion of visual markers within brain surrogates were used to track deformations and calculate spatial strain histories in 6 brain regions of interest. Principal strains, strain rates and strain impulses were calculated and reported. RESULTS: Higher impact velocities corresponded to higher strain values across all impact scenarios. Crown impacts were characterized by high, long duration strains distributed across the parietal, frontal and hippocampal regions whereas frontal impacts were characterized by sharply rising and falling strains primarily found in the parietal, frontal, hippocampal and occipital regions. High strain rates were associated with short durations and impulses indicating fast but short-lived strains. 2.23 m/s (5 mph) crown impacts resulted in 53% of the brain with shear strains higher than 0.15 verses 32% for frontal impacts. CONCLUSIONS: The results reveal large differences in the spatial and temporal strain responses between crown and forehead impacts. Overall, the results suggest that for the same speed, crown impact leads to higher magnitude strain patterns than a frontal impact. The data provided by this model provides unique insight into the spatial and temporal deformation patterns that have not been provided by alternate surrogate models. The model can be used to investigate how anatomical, material and loading features and parameters can affect deformation patterns in specific regions of interest in the brain.


Subject(s)
Craniocerebral Trauma , Skull , Humans , Biomechanical Phenomena , Head/physiology , Brain
2.
Bioengineering (Basel) ; 11(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39061732

ABSTRACT

Traumatic brain injury (TBI) is a biomechanical problem where the initiating event is dynamic loading (blunt, inertial, blast) to the head. To understand the relationship between the mechanical parameters of the injury and the deformation patterns in the brain, we have previously developed a surrogate head (SH) model capable of measuring spatial and temporal deformation in a surrogate brain under blunt impact. The objective of this work was to examine how material properties and anatomical features affect the motion of the brain and the development of injurious deformations. The SH head model was modified to study six variables independently under blunt impact: surrogate brain stiffness, surrogate skull stiffness, inclusion of cerebrospinal fluid (CSF), head/skull size, inclusion of vasculature, and neck stiffness. Each experimental SH was either crown or frontally impacted at 1.3 m/s (3 mph) using a drop tower system. Surrogate brain material, the Hybrid III neck stiffness, and skull stiffness were measured and compared to published properties. Results show that the most significant variables affecting changes in brain deformation are skull stiffness, inclusion of CSF and surrogate brain stiffness. Interestingly, neck stiffness and SH size significantly affected the strain rate only suggesting these parameters are less important in blunt trauma. While the inclusion of vasculature locally created strain concentrations at the interface of the artery and brain, overall deformation was reduced.

SELECTION OF CITATIONS
SEARCH DETAIL