Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Gene Med ; 26(1): e3576, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37580111

ABSTRACT

BACKGROUND: Adenoviral vectors are among the most frequently used vectors for gene therapy and cancer treatment. Most vectors are derived from human adenovirus (Ad) serotype 5 despite limited applicability caused by pre-existing immunity and unfavorable liver tropism, whereas the other more than 100 known human serotypes remain largely unused. Here, we screened a library of human Ad types and identified Ad4 as a promising candidate vector. METHODS: Reporter-gene-expressing viruses representative of the natural human Ad diversity were used to transduce an array of muscle cell lines and two- or three-dimensional tumor cultures. The time-course of transgene expression was monitored by fluorescence or luminescence measurements. To generate replication-deficient Ad4 vector genomes, successive homologous recombination was applied. RESULTS: Ad4, 17 and 50 transduced human cardiomyocytes more efficiently than Ad5, whereas Ad37 was found to be superior in rhabdomyocytes. Despite its moderate transduction efficiency, Ad4 showed efficient and long-lasting gene expression in papillomavirus (HPV) positive tumor organoids. Therefore, we aimed to harness the potential of Ad4 for improved muscle transduction or oncolytic virotherapy of HPV-positive tumors. We deleted the E1 and E3 transcription units to produce first generation Ad vectors for gene therapy. The E1- and E1/E3-deleted vectors were replication-competent in HEK293 cells stably expressing E1 but not in the other cell lines tested. Furthermore, we show that the Ad5 E1 transcription unit can complement the replication of E1-deleted Ad4 vectors. CONCLUSIONS: Our Ad4-based gene therapy vector platform contributes to the development of improved Ad vectors based on non-canonical serotypes for a broad range of applications.


Subject(s)
Adenoviruses, Human , Neoplasms , Papillomavirus Infections , Humans , Serogroup , HEK293 Cells , Adenoviridae/genetics , Adenoviruses, Human/genetics , Genetic Vectors/genetics , Genetic Therapy , Neoplasms/genetics , Neoplasms/therapy
2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834502

ABSTRACT

Two-dimensional black phosphorus (BP) has attracted great attention as a perspective material for various applications. The chemical functionalization of BP is an important pathway for the preparation of materials with improved stability and enhanced intrinsic electronic properties. Currently, most of the methods for BP functionalization with organic substrates require either the use of low-stable precursors of highly reactive intermediates or the use of difficult-to-manufacture and flammable BP intercalates. Herein we report a facile route for simultaneous electrochemical exfoliation and methylation of BP. Conducting the cathodic exfoliation of BP in the presence of iodomethane makes it possible to generate highly active methyl radicals, which readily react with the electrode's surface yielding the functionalized material. The covalent functionalization of BP nanosheets with the P-C bond formation has been proven by various microscopic and spectroscopic methods. The functionalization degree estimated by solid-state 31P NMR spectroscopy analysis reached 9.7%.


Subject(s)
Commerce , Protein Processing, Post-Translational , Methylation , Electrodes , Phosphorus
3.
Soft Matter ; 15(17): 3595-3606, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30964502

ABSTRACT

The key role of water in the formation of cyclo(leucyl-leucyl) organogels was demonstrated. The conditions required for preparation of previously unknown gels with aliphatic hydrocarbons at room temperature were determined. Cyclo(leucyl-leucyl) self-assembles to form different structures depending on the medium used. The molecular organization of gels was studied by the methods of microscopy, spectroscopy and X-ray powder diffractometry. The organogel of cyclo(leucyl-leucyl) can reversibly change volume during the heating/cooling cycle. We showed the possibility of practical application of cyclo(leucyl-leucyl) for water purification. The results obtained give a new insight into the mechanism of gelation with cyclo(dipeptide)-based low-molecular-weight gelators and may be useful for the preparation of new physical gels.

4.
J Pept Sci ; 25(8): e3177, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31317614

ABSTRACT

Thermal treatment of short-chain oligopeptides is able to initiate the process of their self-assembly with the formation of organic nanostructures with unique properties. On the other hand, heating can lead to a chemical reaction with the formation of new substances with specific properties and ability to form structures with different morphology. Therefore, in order to have a desired process, researcher needs to find its temperature range. In the present work, cyclization of L -isoleucyl-L -alanine dipeptide in the solid state upon heating was studied. Kinetic parameters of this reaction were estimated within the approaches of the nonisothermal kinetics. The correlation between side chain structure of dipeptides and temperature of their cyclization in the solid state was found for the first time. This correlation may be used to predict the temperature, at which dipeptide self-assembly changes to chemical reaction. The differences in self-assembly of linear and cyclic dipeptides were demonstrated using atomic force microscopy. The effect of dipeptide concentration in a source solution and an organic solvent used on self-assembly of dipeptides was shown. The new information obtained on the thermal properties and self-assembly of linear and cyclic forms of L -isoleucyl-L -alanine may be useful for the design of new nanomaterials based on oligopeptides, as well as for the synthesis of cyclic oligopeptides.


Subject(s)
Alanine/chemistry , Dipeptides/chemical synthesis , Isoleucine/chemistry , Temperature , Cyclization , Dipeptides/chemistry , Gas Chromatography-Mass Spectrometry , Kinetics , Molecular Conformation
5.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903703

ABSTRACT

Two-dimensional black phosphorus (BP) has emerged as a perspective material for various micro- and opto-electronic, energy, catalytic, and biomedical applications. Chemical functionalization of black phosphorus nanosheets (BPNS) is an important pathway for the preparation of materials with improved ambient stability and enhanced physical properties. Currently, the covalent functionalization of BPNS with highly reactive intermediates, such as carbon-free radicals or nitrenes, has been widely implemented to modify the material's surface. However, it should be noted that this field requires more in-depth research and new developments. Herein, we report for the first time the covalent carbene functionalization of BPNS using dichlorocarbene as a functionalizing agent. The P-C bond formation in the obtained material (BP-CCl2) has been confirmed by Raman, solid-state 31P NMR, IR, and X-ray photoelectron spectroscopy methods. The BP-CCl2 nanosheets exhibit an enhanced electrocatalytic hydrogen evolution reaction (HER) performance with an overpotential of 442 mV at -1 mA cm-2 and a Tafel slope of 120 mV dec-1, outperforming the pristine BPNS.

6.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 4): 324-330, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33936751

ABSTRACT

The title hydrated copper(I)-l-cysteine-chloride complex has a polymeric structure of composition {[Cu16(CysH2)6Cl16]·xH2O} n [CysH2 = HO2CCH(NH3 +)CH2S- or C3H7NO2S], namely, poly[[tetra-µ3-chlorido-deca-µ2-chlorido-di-chlorido-hexa-kis-(µ4-l-cysteinato)hexa-deca-copper] polyhydrate]. The copper atoms are linked by thiol-ate groups to form Cu12S6 nanoclusters that take the form of a tetra-kis cubocta-hedron, made up of a Cu12 cubo-octa-hedral subunit that is augmented by six sulfur atoms that are located symmetrically atop of each of the Cu4 square units of the Cu12 cubo-octa-hedron. The six S atoms thus form an octa-hedral subunit themselves. The exterior of the Cu12S6 sphere is decorated by chloride ions and trichlorocuprate units. Three chloride ions are coordinated in an irregular fashion to trigonal Cu3 subunits of the nanocluster, and four trigonal CuCl3 units are bonded via each of their chloride ions to a copper ion on the Cu12S6 sphere. The trigonal CuCl3 units are linked via Cu2Cl2 bridges covalently connected to equivalent units in neighboring nanoclusters. Four such connections are arranged in a tetra-hedral fashion, thus creating an infinite diamond-like net of Cu12S6Cl4(CuCl3)4 nanoclusters. The network thus formed results in large channels occupied by solvent mol-ecules that are mostly too ill-defined to model. The content of the voids, believed to be water mol-ecules, was accounted for via reverse Fourier-transform methods using the SQUEEZE algorithm [Spek (2015 ▸). Acta Cryst. C71, 9-18]. The protonated amino groups of the cysteine ligands are directed away from the sphere, forming N-H⋯Cl hydrogen bonds with chloride-ion acceptors of their cluster. The protonated carb-oxy groups point outwards and presumably form O-H⋯O hydrogen bonds with the unresolved water mol-ecules of the solvent channels. Disorder is observed in one of the two crystallographically unique [Cu16(CysH2)6Cl16] segments for three of the six cysteine anions.

7.
J Phys Chem B ; 121(36): 8603-8610, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28820260

ABSTRACT

Thermal treatment of oligopeptides is one of the methods for synthesis of organic nanostructures. However, heating may lead not only to self-assembly of the initial molecules, but also to chemical reactions resulting in the formation of new unexpected nanostructures or change in the properties of the existing ones. In the present work, the reaction of cyclization of dipeptide l-leucyl-l-leucine in solid state under heating was studied. The change in morphology of dipeptide thin film and formation of nanostructures after heating was visualized using atomic force microscopy. This method also was used for demonstration of differences in self-assembly of linear and cyclic dipeptides. The chemical structure of reaction product was characterized by NMR spectrometry, FTIR spectroscopy and GC-MS analysis. Kinetic parameters of cyclization were estimated within the approaches of the nonisothermal kinetics ("model-free" kinetics and linear regression methods for detection of topochemical equation). The results of present work are useful for explanation the changes in the properties of nanostructures based on short-chain oligopeptides, notably leucyl-leucine, after thermal treatment, as well as for the synthesis of cyclic oligopeptides.


Subject(s)
Dipeptides/chemistry , Macromolecular Substances/chemistry , Cyclization , Heating , Hydrogen Bonding , Kinetics , Surface Properties
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 64(2): 405-11, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16330252

ABSTRACT

Solvent effects on O-H stretching vibration frequency of methanol in hydrogen bond complexes with different bases, CH3OH...B, have been investigated by FTIR spectroscopy. Using chloroform as a solvent results in strengthening of CH3OH...B hydrogen bonding due to cooperativity between CH3OH...B and Cl3CH...CH3OH bonds. A method is proposed for quantifying the hydrogen bond cooperativity effect. The determined cooperativity factors take into account all specific interactions of the solute in proton-donor solvents. In addition, a method of estimation of cooperativity factors Ab and AOX in system (CH3OH)2...B is proposed. It is demonstrated that in such systems, the cooperativity factor of the OH...B bond decreases and that of the OH...O bond increases with increasing the acceptor strength of the base B. The obtained results are in a good agreement with the data obtained previously from matrix-isolation FTIR spectroscopy.


Subject(s)
Solvents/chemistry , Vibration , Acetone/chemistry , Chloroform/chemistry , Dimerization , Dimethyl Sulfoxide/chemistry , Hydroxyl Radical/chemistry , Methanol/chemistry , Pyridines/chemistry , Spectroscopy, Fourier Transform Infrared
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 64(2): 397-404, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16332454

ABSTRACT

Solvent effects on OH stretching vibrations in several complexes with hydrogen bonding have been investigated by FTIR spectroscopy. To assess the influence of van der Waals (vdW) interactions on frequency shifts, a new parameter of solvent, square root deltacavhS, is proposed. This parameter has been derived from equations describing enthalpy of non-specific solvation. Linear correlation was established between the OH frequency shift (with respect to the gas phase) and parameter square root deltacavhS for a series of complexes of aliphatic alcohols with standard proton acceptors. Linear correlations with square root deltacavhS were also observed for a series of "free" O-H and also C=O, P=O, S=O and C-Br stretching vibrations. A new method is proposed for estimating the gas-phase stretching frequency from IR spectra of solutions. In addition, frequencies of "free" X-H groups in neat bases were deduced from the experimental data.


Subject(s)
Solvents/chemistry , Vibration , Chemical Phenomena , Chemistry, Physical , Hydrogen Bonding , Hydroxyl Radical/chemistry , Methanol/chemistry , Spectrophotometry, Infrared , Temperature
10.
J Adv Pharm Technol Res ; 7(1): 6-12, 2016.
Article in English | MEDLINE | ID: mdl-26955604

ABSTRACT

In this work enthalpies of dissolution in water of polyethylene glycols (PEGs) having an average molecular weight of 1000 and 1400, Pluronic-F127, phenacetin as well as the composites prepared from them were measured using solution calorimetry at 298.15 K. Intermolecular interaction energies of polymer-phenacetin were calculated on the basis of an additive scheme. It was shown that for mixtures with high content of polymer (>90 wt%) Pluronic-F127 has the highest solubilizing effect, while for mixtures with (4-6):1 polymer: phenacetin ratio the best solubilizing agent is PEG-1400. Infrared-spectra showed a decrease of the number of self-associated molecules of phenacetin with increasing of polymer content in the composites. The obtained results enabled us to identify the features of intermolecular interactions of polymers with a model hydrophobic drug and may be used for optimizing the conditions for preparing solid dispersions based on hydrophilic polymers.

11.
Article in English | MEDLINE | ID: mdl-22366617

ABSTRACT

Experimental study of hydrogen bond cooperativity in hetero-complexes in the gas phase was carried out by IR-spectroscopy method. Stretching vibration frequencies of O-H groups in phenol and catechol molecules as well as of their complexes with nitriles and ethers were determined in the gas phase using a specially designed cell. O-H groups experimental frequency shifts in the complexes of catechol induced by the formation of intermolecular hydrogen bonds are significantly higher than in the complexes of phenol due to the hydrogen bond cooperativity. It was shown that the cooperativity factors of hydrogen bonds in the complexes of catechol with nitriles and ethers in the gas phase are approximately the same. Quantum chemical calculations of the studied systems have been performed using density functional theory (DFT) methods. It was shown, that theoretically obtained cooperativity factors of hydrogen bonds in the complexes of catechol with proton acceptors are in good agreement with experimental values. Cooperative effects lead to a strengthening of intermolecular hydrogen bonds in the complexes of catechol on about 30%, despite the significant difference in the proton acceptor ability of the bases. The analysis within quantum theory of atoms in molecules was carried out for the explanation of this fact.


Subject(s)
Catechols/chemistry , Spectroscopy, Fourier Transform Infrared , Ethers/chemistry , Gases/chemistry , Hydrogen Bonding , Models, Molecular , Nitriles/chemistry , Phenol/chemistry , Protons , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL