Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Cell Sci ; 135(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35635291

ABSTRACT

NFAT5 is the only known mammalian tonicity-responsive transcription factor with an essential role in cellular adaptation to hypertonic stress. It is also implicated in diverse physiological and pathological processes. NFAT5 activity is tightly regulated by extracellular tonicity, but the underlying mechanisms remain elusive. Here, we demonstrate that NFAT5 enters the nucleus via the nuclear pore complex. We found that NFAT5 utilizes a unique nuclear localization signal (NFAT5-NLS) for nuclear import. siRNA screening revealed that only karyopherin ß1 (KPNB1), but not karyopherin α, is responsible for the nuclear import of NFAT5 via direct interaction with the NFAT5-NLS. Proteomics analysis and siRNA screening further revealed that nuclear export of NFAT5 under hypotonicity is driven by exportin-T (XPOT), where the process requires RuvB-like AAA-type ATPase 2 (RUVBL2) as an indispensable chaperone. Our findings have identified an unconventional tonicity-dependent nucleocytoplasmic trafficking pathway for NFAT5 that represents a critical step in orchestrating rapid cellular adaptation to change in extracellular tonicity. These findings offer an opportunity for the development of novel NFAT5 targeting strategies that are potentially useful for the treatment of diseases associated with NFAT5 dysregulation.


Subject(s)
Cell Nucleus , Karyopherins , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Active Transport, Cell Nucleus , Animals , Carrier Proteins/metabolism , Cell Nucleus/metabolism , DNA Helicases , Humans , Karyopherins/metabolism , Mammals/metabolism , Nuclear Localization Signals/metabolism , Nucleocytoplasmic Transport Proteins , RNA, Small Interfering/metabolism , Transcription Factors/metabolism , beta Karyopherins/genetics , beta Karyopherins/metabolism
2.
J Biol Chem ; 298(5): 101895, 2022 05.
Article in English | MEDLINE | ID: mdl-35378133

ABSTRACT

Long noncoding RNAs (lncRNAs) have gained widespread attention as a new layer of regulation in biological processes during development and disease. The lncRNA ELDR (EGFR long noncoding downstream RNA) was recently shown to be highly expressed in oral cancers as compared to adjacent nontumor tissue, and we previously reported that ELDR may be an oncogene as inhibition of ELDR reduces tumor growth in oral cancer models. Furthermore, overexpression of ELDR induces proliferation and colony formation in normal oral keratinocytes (NOKs). In this study, we examined in further detail how ELDR drives the neoplastic transformation of normal keratinocytes. We performed RNA-seq analysis on NOKs stably expressing ELDR (NOK-ELDR), which revealed that ELDR enhances the expression of cell cycle-related genes. Expression of Aurora kinase A and its downstream targets Polo-like kinase 1, cell division cycle 25C, cyclin-dependent kinase 1, and cyclin B1 (CCNB1) are significantly increased in NOK-ELDR cells, suggesting induction of G2/M progression. We further identified CCCTC-binding factor (CTCF) as a binding partner of ELDR in NOK-ELDR cells. We show that ELDR stabilizes CTCF and increases its expression. Finally, we demonstrate the ELDR-CTCF axis upregulates transcription factor Forkhead box M1, which induces Aurora kinase A expression and downstream G2/M transition. These findings provide mechanistic insights into the role of the lncRNA ELDR as a potential driver of oral cancer during neoplastic transformation of normal keratinocytes.


Subject(s)
Biological Phenomena , Keratinocytes , Mouth Neoplasms , RNA, Long Noncoding , Aurora Kinase A/metabolism , Cell Division , Cell Line, Tumor , Cell Proliferation/genetics , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Humans , Keratinocytes/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , RNA, Long Noncoding/genetics
3.
Am J Physiol Cell Physiol ; 317(1): C31-C38, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31067085

ABSTRACT

We previously described the protective role of the nuclear factor of activated T cells 5 (NFAT5) during hypoxia. Alternatively, inducible nitric oxide synthase (iNOS) is also induced by hypoxia. Some evidence indicates that NFAT5 is essential for the expression of iNOS in Toll-like receptor-stimulated macrophages and that iNOS inhibition increases NFAT5 expression in renal ischemia-reperfusion. Here we studied potential NFAT5 target genes stimulated by hypoxia in mouse embryonic fibroblast (MEF) cells. We used three types of MEF cells associated with NFAT5 gene: NFAT5 wild type (MEF-NFAT5+/+), NFAT5 knockout (MEF-NFAT5-/-), and NFAT5 dominant-negative (MEF-NFAT5Δ/Δ) cells. MEF cells were exposed to 21% or 1% O2 in a time course curve of 48 h. We found that, in MEF-NFAT5+/+ cells exposed to 1% O2, NFAT5 was upregulated and translocated into the nuclei, and its transactivation domain activity was induced, concomitant with iNOS, aquaporin 1 (AQP-1), and urea transporter 1 (UTA-1) upregulation. Interestingly, in MEF-NFAT5-/- or MEF-NFAT5Δ/Δ cells, the basal levels of iNOS and AQP-1 expression were strongly downregulated, but not for UTA-1. The upregulation of AQP-1, UTA-1, and iNOS by hypoxia was blocked in both NFAT5-mutated cells. The iNOS induction by hypoxia was recovered in MEF-NFAT5-/- MEF cells, when recombinant NFAT5 protein expression was reconstituted, but not in MEF-NFAT5Δ/Δ cells, confirming the dominant-negative effect of MEF-NFAT5Δ/Δ cells. We did not see the rescue effect on AQP-1 expression. This work provides novel and relevant information about the signaling pathway of NFAT5 during responses to oxygen depletion in mammalian cells and suggests that the expression of iNOS induced by hypoxia is dependent on NFAT5.


Subject(s)
Fibroblasts/enzymology , Nitric Oxide Synthase Type II/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Animals , Aquaporin 1/genetics , Aquaporin 1/metabolism , Cell Hypoxia , Cells, Cultured , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Signal Transduction , Transcription Factors/genetics , Urea Transporters
4.
J Virol ; 88(5): 2442-51, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24335313

ABSTRACT

Chronic hepatitis B virus (HBV) infection is a major risk factor for liver cirrhosis and hepatocellular carcinoma. Nevertheless, the molecular mechanism of HBV replication remains elusive. SIRT1 is a class III histone deacetylase that is a structure component of the HBV cccDNA minichromosome. In this study, we found by using microarray-based gene expression profiling analysis that SIRT1 was upregulated in HBV-expressing cells. Gene silencing of SIRT1 significantly inhibited HBV DNA replicative intermediates, 3.5-kb mRNA, and core protein levels. In contrast, the overexpression of SIRT1 augmented HBV replication. Furthermore, SIRT1 enhanced the activity of HBV core promoter by targeting transcription factor AP-1. The c-Jun subunit of AP-1 was bound to the HBV core promoter region, as demonstrated by using a chromatin immunoprecipitation assay. Mutation of AP-1 binding site or knockdown of AP-1 abolished the effect of SIRT1 on HBV replication. Finally, SIRT1 inhibitor sirtinol also suppressed the HBV DNA replicative intermediate, as well as 3.5-kb mRNA. Our study identified a novel host factor, SIRT1, which may facilitate HBV replication in hepatocytes. These data suggest a rationale for the use of SIRT1 inhibitor in the treatment of HBV infection.


Subject(s)
Gene Expression Regulation, Viral , Hepatitis B virus/physiology , Sirtuin 1/metabolism , Transcription Factor AP-1/metabolism , Transcription, Genetic , Virus Replication , Cell Line , Gene Expression , Gene Silencing , Genes, Viral , Histone Deacetylase Inhibitors/pharmacology , Humans , Promoter Regions, Genetic , Protein Binding , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/genetics , Virus Replication/drug effects
5.
Hepatology ; 57(6): 2287-98, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23348706

ABSTRACT

UNLABELLED: Sirtuin 1 (SIRT1) has been implicated in telomere maintenance and the growth of hepatocellular carcinoma (HCC). Nevertheless, the role of other sirtuins in the pathogenesis of HCC remains elusive. We found that sirtuin 2 (SIRT2), another member of the sirtuin family, also contributes to cell motility and invasiveness of HCC. SIRT2 is up-regulated in HCC cell lines and in a subset of human HCC tissues (23/45). Up-regulations of SIRT2 in primary HCC tumors were significantly correlated with the presence of microscopic vascular invasion (P = 0.001), a more advanced tumor stage (P = 0.004), and shorter overall survival (P = 0.0499). Functional studies by short hairpin RNA-mediated suppression of SIRT2 expression in HCC cell lines revealed significant inhibition of motility and invasiveness. Depletion of SIRT2 also led to the regression of epithelial-mesenchymal transition (EMT) phenotypes, whereas the ectopic expression of SIRT2 in the immortalized hepatocyte cell line L02 promoted cell motility and invasiveness. Mechanistic studies revealed that SIRT2 regulates the deacetylation and activation of protein kinase B, which subsequently impinges on the glycogen synthase kinase-3ß/ß-catenin signaling pathway to regulate EMT. CONCLUSIONS: Our findings have uncovered a novel role for SIRT2 in HCC metastasis, and provide a rationale to explore the use of sirtuin inhibitors in HCC therapy. (HEPATOLOGY 2013;).


Subject(s)
Carcinoma, Hepatocellular/metabolism , Epithelial-Mesenchymal Transition , Liver Neoplasms/metabolism , Sirtuin 2/metabolism , Adult , Aged , Apoptosis , Cell Movement , Cell Proliferation , Female , Gene Silencing , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hep G2 Cells , Humans , Male , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , beta Catenin/metabolism
6.
Biochem Biophys Rep ; 33: 101412, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36578529

ABSTRACT

Background: Hepatocellular carcinoma (HCC) accounts for approximately 90% of primary liver cancer cases and ranks as the second leading cause of cancer related death. Multiple receptor tyrosine kinases such as EGFR, FGFR and c-MET have been shown to drive tumorigenesis and progression of HCC. However, tyrosine kinase inhibitors (TKIs) that target these kinases, including the FDA-approved sorafenib, only offer limited clinical success. Resistance to sorafenib and other TKIs also readily emerge in HCC patients, further limiting the usage of these drugs. Novel therapeutic strategies are needed to address the urgent unmet medical need for HCC patients. Results: Autophagy is an evolutionally conserved lysosome-dependent degradation process that is also functionally implicated in HCC. We previously developed an autophagy-inducing stapled peptide (Tat-SP4) that induced autophagy and endolysosomal degradation of EGFR in lung cancer and breast cancer cells. Here we present data to show that Tat-SP4 also induced significant autophagic response in multiple HCC cell lines and promoted the endolysosomal degradation of c-MET to attenuate its downstream signaling activities although it didn't affect the intrinsically fast turnover of EGFR. Tat-SP4 also overrode adaptive resistance to sorafenib in c-MET+ HCC cells but employed the distinct mechanism of inducing non-apoptotic cell death. Conclusion: With its distinct mechanism of promoting autophagy and endolysosomal degradation of c-MET, Tat-SP4 may serve as a novel therapeutic agent that complement and synergize with sorafenib to enhance its clinical efficacy in HCC patients.

7.
Front Immunol ; 12: 679184, 2021.
Article in English | MEDLINE | ID: mdl-34276666

ABSTRACT

Macrophages play an important role in the host defense mechanism. In response to infection, macrophages activate a genetic program of pro-inflammatory response to kill any invading pathogen, and initiate an adaptive immune response. We have identified RUVBL2 - an ATP-binding protein belonging to the AAA+ (ATPase associated with diverse cellular activities) superfamily of ATPases - as a novel regulator in pro-inflammatory response of macrophages. Gene knockdown of Ruvbl2, or pharmacological inhibition of RUVBL1/2 activity, compromises type-2 nitric oxide synthase (Nos2) gene expression, nitric oxide production and anti-bacterial activity of mouse macrophages in response to lipopolysaccharides (LPS). RUVBL1/2 inhibitor similarly inhibits pro-inflammatory response in human monocytes, suggesting functional conservation of RUVBL1/2 in humans. Transcriptome analysis further revealed that major LPS-induced pro-inflammatory pathways in macrophages are regulated in a RUVBL1/2-dependent manner. Furthermore, RUVBL1/2 inhibition significantly reduced the level of histone H3K4me3 at the promoter region of Nos2 and Il6, two prototypical pro-inflammatory genes, and diminished the recruitment of NF-kappaB to the corresponding enhancers. Our study reveals RUVBL1/2 as an integral component of macrophage pro-inflammatory responses through epigenetic regulations, and the therapeutic potentials of RUVBL1/2 inhibitors in the treatment of diseases caused by aberrant activation of pro-inflammatory pathways.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , DNA Helicases/metabolism , Histones/metabolism , Macrophages/immunology , Macrophages/metabolism , Multiprotein Complexes/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Animals , Carrier Proteins/genetics , Cytokines/metabolism , DNA Helicases/genetics , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Methylation , Mice , Nitric Oxide/metabolism , Protein Processing, Post-Translational , RAW 264.7 Cells
8.
Nat Prod Rep ; 27(7): 1066-83, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20405078

ABSTRACT

The pseudolaric acids are diterpenoids isolated from the root bark of Pseudolarix amabilis, or the golden larch. Pseudolaric acids A and B are the major antifungal and anti-angiogenic congeners of this family of compounds. This review presents the results of the isolation, biological and synthetic studies of these natural products. 127 references are cited.


Subject(s)
Biological Products , Diterpenes , Drugs, Chinese Herbal , Angiogenesis Inhibitors , Anti-Infective Agents , Antineoplastic Agents, Phytogenic , Biological Products/chemical synthesis , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Contraceptive Agents , Diterpenes/chemical synthesis , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology , Drugs, Chinese Herbal/chemical synthesis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Molecular Structure , Structure-Activity Relationship
9.
Proteins ; 67(4): 1154-66, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17380510

ABSTRACT

The deleted in liver cancer 2 (DLC2) is a tumor suppressor gene, frequently found to be underexpressed in hepatocellular carcinoma. DLC2 is a multidomain protein containing a sterile alpha-motif (SAM) domain, a GTPase-activating protein (GAP) domain, and a lipid-binding StAR-related lipid-transfer (START) domain. The SAM domain of DLC2, DLC2-SAM, exhibits a low level of sequence homology (15-30%) with other SAM domains, and appears to be the prototype of a new subfamily of SAM domains found in DLC2-related proteins. In the present study, we have determined the three-dimensional solution structure of DLC2-SAM using NMR methods together with molecular dynamics simulated annealing. In addition, we performed a backbone dynamics study. The DLC2-SAM packed as a unique four alpha-helical bundle stabilized by interhelix hydrophobic interactions. The arrangement of the four helices is distinct from all other known SAM domains. In contrast to some members of the SAM domain family which form either dimers or oligomers, both biochemical analyses and rotational correlation time (tau(c)) measured by backbone 15N relaxation experiments indicated that DLC2-SAM exists as a monomer in solution. The interaction of DLC2-SAM domain with sodium dodecyl sulfate (SDS) micelles and 1,2-dimyristoyl-sn-glycerol-3-phosphatidylglycerol (DMPG) phospholipids was examined by CD and NMR spectroscopic techniques. The DLC2-SAM exhibits membrane binding properties accompanied by minor loss of the secondary structure of the protein. Deletion studies showed that the self-association of DLC2 in vivo does not require SAM domain, instead, a protein domain consisting of residues 120-672 mediates the self-association of DLC2.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Phospholipids/chemistry , Phospholipids/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Circular Dichroism , Micelles , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid , Sodium Dodecyl Sulfate , Solutions/chemistry , Tumor Suppressor Proteins/genetics
10.
Front Pharmacol ; 8: 351, 2017.
Article in English | MEDLINE | ID: mdl-28642707

ABSTRACT

Emerging evidence suggests the therapeutic role of autophagic modulators in cancer therapy. This study aims to identify novel traditional Chinese medicinal herbs as potential anti-tumor agents through autophagic induction, which finally lead to autophagy mediated-cell death in apoptosis-resistant cancer cells. Using bioactivity-guided purification, we identified tetrandrine (Tet) from herbal plant, Radix stephaniae tetrandrae, as an inducer of autophagy. Across a number of cancer cell lines, we found that breast cancer cells treated with tetrandrine show an increase autophagic flux and formation of autophagosomes. In addition, tetrandrine induces cell death in a panel of apoptosis-resistant cell lines that are deficient for caspase 3, caspase 7, caspase 3 and 7, or Bax-Bak respectively. We also showed that tetrandrine-induced cell death is independent of necrotic cell death. Mechanistically, tetrandrine induces autophagy that depends on mTOR inactivation. Furthermore, tetrandrine induces autophagy in a calcium/calmodulin-dependent protein kinase kinase-ß (CaMKK-ß), 5' AMP-activated protein kinase (AMPK) independent manner. Finally, by kinase profiling against 300 WT kinases and computational molecular docking analysis, we showed that tetrandrine is a novel PKC-α inhibitor, which lead to autophagic induction through PKC-α inactivation. This study provides detailed insights into the novel cytotoxic mechanism of an anti-tumor compound originated from the herbal plant, which may be useful in promoting autophagy mediated- cell death in cancer cell that is resistant to apoptosis.

11.
Clin Cancer Res ; 11(16): 6002-11, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16115945

ABSTRACT

PURPOSE: Pseudolaric acid B (PAB) is the major bioactive constituent in the root bark of Pseudolarix kaempferi that has been used as an antifungal remedy in traditional Chinese medicine. Previous studies showed that PAB exhibited substantial cytotoxicity. The aims of this study were to elucidate the molecular target of PAB, to examine its mechanism of action, and to evaluate the efficacy of this compound in vivo. EXPERIMENTAL DESIGN: The effect of PAB on cell growth inhibition toward a panel of cancer cell lines was assayed. Cell cycle analysis, Western blotting, immunocytochemistry, and apoptosis analysis were carried out to examine the mechanism of action. Tubulin polymerization assays were conducted to examine the interaction between PAB and tubulin. A P-glycoprotein-overexpressing cell line was used to evaluate the efficacy of PAB toward multidrug-resistant phenotypes. In vivo efficacy of PAB was evaluated by the murine xenograft model. RESULTS: PAB induces cell cycle arrest at G2-M transition, leading to apoptosis. The drug disrupts cellular microtubule networks and inhibits the formation of mitotic spindles. Polymerization of purified bovine brain tubulin was dose-dependently inhibited by PAB. Furthermore, PAB circumvents the multidrug resistance mechanism, displaying notable potency also in P-glycoprotein-overexpressing cells. Finally, we showed that PAB is effective in inhibiting tumor growth in vivo. CONCLUSIONS: We identified the microtubules as the molecular target of PAB. Furthermore, we showed that PAB circumvents P-glycoprotein overexpression-induced drug resistance and is effective in inhibiting tumor growth in vivo. Our work will facilitate the future development of PAB as a cancer therapeutic.


Subject(s)
Diterpenes/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Binding Sites , Binding, Competitive/drug effects , Blotting, Western , Cell Cycle Proteins/metabolism , Cell Division/drug effects , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Colchicine/pharmacology , Diterpenes/chemistry , Diterpenes/therapeutic use , Dose-Response Relationship, Drug , Drugs, Chinese Herbal , G2 Phase/drug effects , HeLa Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microscopy, Fluorescence , Microtubules/metabolism , Molecular Structure , Time Factors , Treatment Outcome , Tubulin/metabolism
12.
PLoS One ; 9(1): e84931, 2014.
Article in English | MEDLINE | ID: mdl-24416313

ABSTRACT

Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that is implicated in plethora of biological processes, including metabolism, aging, stress response, and tumorigenesis. Telomerase (TERT) is essential for telomere maintenance. Activation of TERT is considered a crucial step in tumorigenesis, and therefore it is a potential therapeutic target against cancer. We have recently found that SIRT1 expression is highly elevated in hepatocellular carcinoma, and the depletion of SIRT1 leads to substantial reduction in TERT mRNA and protein expression. However, the underlying molecular mechanism of SIRT1-dependent TERT expression remains uncharacterized. Here, we elucidated if SIRT1 regulates TERT expression via transcriptional, epigenetic and post-transcriptional mechanisms. We report that depletion of SIRT1 does not lead to significant change in transcriptional activity and CpG methylation patterns of the TERT promoter, nor does it affect mRNA stability or 3'-UTR regulation of TERT. Intriguingly, depletion of SIRT1 is associated with substantial induction of acetylated histone H3-K9 and reduction of trimethyl H3-K9 at the TERT gene, which are known to be associated with gene activation. Our data revealed that SIRT1 regulates histone acetylation and methylation at the TERT promoter. We postulated that SIRT1 may regulate TERT expression via long-range interaction, or via yet unidentified histone modifications.


Subject(s)
Carcinoma, Hepatocellular/pathology , Epigenesis, Genetic , Liver Neoplasms/pathology , Sirtuin 1/economics , Telomerase/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing , Histones/genetics , Humans , RNA, Small Interfering/genetics , Sirtuin 1/genetics
13.
Cancer Res ; 71(12): 4138-49, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21527554

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly malignant tumor with a poor prognosis. Treatment of HCC is complicated by the fact that the disease is often diagnosed at an advanced stage when it is no longer amenable to curative surgery, and current systemic chemotherapeutics are mostly inefficacious. Sirtuin 1 (SIRT1) is a class III histone deacetylase that is implicated in gene regulations and stress resistance. In this study, we found that SIRT1 is essential for the tumorigenesis of HCC. We showed that although SIRT1 was expressed at very low levels in normal livers, it was overexpressed in HCC cell lines and in a subset of HCC. Tissue microarray analysis of HCC and adjacent nontumoral liver tissues revealed a positive correlation between the expression levels of SIRT1 and advancement in tumor grades. Downregulation of SIRT1 consistently suppressed the proliferation of HCC cells via the induction of cellular senescence or apoptosis. SIRT1 silencing also caused telomere dysfunction-induced foci and nuclear abnormality that were clearly associated with reduced expressions of telomerase reverse transcriptase (TERT), and PTOP, which is a member of the shelter in complex. Ectopic expression of either TERT or PTOP in SIRT1-depleted cells significantly restored cell proliferation. There was also a positive correlation between the level of induction of SIRT1 and TERT [corrected] in human HCC. Finally, SIRT1-silencing sensitized HCC cells to doxorubicin treatment. Together, our findings reveal a novel function for SIRT1 in telomere maintenance of HCC, and they rationalize the clinical exploration of SIRT1 inhibitors for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Proliferation , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Sirtuin 1/physiology , Telomere , Apoptosis , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cellular Senescence , Doxorubicin/pharmacology , Humans , Immunohistochemistry , Liver Neoplasms/genetics , Shelterin Complex , Sirtuin 1/analysis , Telomerase/analysis , Telomerase/physiology , Telomere-Binding Proteins/analysis , Telomere-Binding Proteins/physiology , Tumor Suppressor Protein p53/physiology , Up-Regulation
14.
Virology ; 406(2): 280-5, 2010 Oct 25.
Article in English | MEDLINE | ID: mdl-20705311

ABSTRACT

Hepatitis B virus infection is a worldwide epidemic and is closely associated with the development of hepatocellular carcinoma. Nevertheless, the molecular mechanisms of HBV infection and carcinogenesis remain elusive. Using a hepatocyte model of HBV infection and comparing the gene expression profiling analysis we found that heparan sulfate D-glucosaminyl 3-O-sulfotransferase 3 B1 (HS3ST3B1,3-OST3-B) is down-regulated in the hepatocytes of chronic HBV infection model. HS3ST3B1 showed potent inhibitory effect on HBV replication. The inhibitory effect of HS3ST3B1 overexpression was lost upon gene silencing of HS3ST3B1 or when a catalytic inactive mutant of HS3ST3B1 was expressed. Our study revealed the anti-viral activity of HS3ST3B1 on HBV replication. It is conceivable that possible therapeutic applications of HBV infection could be devised by manipulating HS3ST3B1 activity.


Subject(s)
Hepatitis B virus/physiology , Hepatitis B, Chronic/enzymology , Sulfotransferases/metabolism , Virus Replication , Down-Regulation , Hep G2 Cells , Hepatitis B virus/genetics , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/virology , Hepatocytes/enzymology , Hepatocytes/virology , Humans , Mutation , Sulfotransferases/genetics
15.
Mol Cancer Ther ; 9(3): 718-30, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20197400

ABSTRACT

Emerging evidence suggests that autophagic modulators have therapeutic potential. This study aims to identify novel autophagic inducers from traditional Chinese medicinal herbs as potential antitumor agents. Using an image-based screen and bioactivity-guided purification, we identified alisol B 23-acetate, alisol A 24-acetate, and alisol B from the rhizome of Alisma orientale as novel inducers of autophagy, with alisol B being the most potent natural product. Across several cancer cell lines, we showed that alisol B-treated cells displayed an increase of autophagic flux and formation of autophagosomes, leading to cell cycle arrest at the G(1) phase and cell death. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, we showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase. This study provides detailed insights into the cytotoxic mechanism of a novel antitumor compound.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Cholestenones/pharmacology , Endoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Stress, Physiological/drug effects , Animals , Antineoplastic Agents/pharmacology , Cells, Cultured , Drug Screening Assays, Antitumor , Endoplasmic Reticulum/pathology , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , Inhibitory Concentration 50 , Mice , Models, Biological , Unfolded Protein Response/drug effects
16.
PLoS One ; 4(12): e8435, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-20041176

ABSTRACT

BACKGROUND: Osmotic Response Element-Binding Protein (OREBP), also known as TonEBP or NFAT5, is a unique transcription factor. It is hitherto the only known mammalian transcription factor that regulates hypertonic stress-induced gene transcription. In addition, unlike other monomeric members of the NFAT family, OREBP exists as a homodimer and it is the only transcription factor known to bind naked DNA targets by complete encirclement in vitro. Nevertheless, how OREBP interacts with target DNA, also known as ORE/TonE, and how it elicits gene transcription in vivo, remains unknown. METHODOLOGY: Using hypertonic induction of the aldose reductase (AR) gene activation as a model, we showed that OREs contained dynamic nucleosomes. Hypertonic stress induced a rapid and reversible loss of nucleosome(s) around the OREs. The loss of nucleosome(s) was found to be initiated by an OREBP-independent mechanism, but was significantly potentiated in the presence of OREBP. Furthermore, hypertonic induction of AR gene was associated with an OREBP-dependent hyperacetylation of histones that spanned the 5' upstream sequences and at least some exons of the gene. Nevertheless, nucleosome loss was not regulated by the acetylation status of histone. SIGNIFICANCE: Our findings offer novel insights into the mechanism of OREBP-dependent transcriptional regulation and provide a basis for understanding how histone eviction and transcription factor recruitment are coupled.


Subject(s)
Hypertonic Solutions/pharmacology , NFATC Transcription Factors/metabolism , Nucleosomes/metabolism , Stress, Physiological/drug effects , Acetylation/drug effects , Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Animals , Binding Sites , HeLa Cells , Histones/metabolism , Humans , Mice , Micrococcal Nuclease/metabolism , NIH 3T3 Cells , Protein Binding/drug effects , Response Elements/genetics
17.
J Biol Chem ; 283(25): 17624-34, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18411282

ABSTRACT

The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, is the only known osmo-sensitive transcription factor that mediates cellular adaptations to extracellular hypertonic stress. Although it is well documented that the subcellular localization and transactivation activity of OREBP/TonEBP are tightly regulated by extracellular tonicity, the molecular mechanisms involved remain elusive. Here we show that nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by the dual phosphorylation of Ser-155 and Ser-158. Alanine scanning mutagenesis revealed that Ser-155 is an essential residue that regulates OREBP/TonEBP nucleocytoplasmic trafficking. Tandem mass spectrometry revealed that Ser-155 and Ser-158 of OREBP/TonEBP are both phosphorylated in living cells under hypotonic conditions. In vitro phosphorylation assays further suggest that phosphorylation of the two serine residues proceeds in a hierarchical manner with phosphorylation of Ser-155 priming the phosphorylation of Ser-158 and that these phosphorylations are essential for nucleocytoplasmic trafficking of the transcription factor. Finally, we have shown that the pharmacological inhibition of casein kinase 1 (CK1) abolishes the phosphorylation of Ser-158 and impedes OREBP/TonEBP nuclear export and that recombinant CK1 phosphorylates Ser-158. Knockdown of CK1alpha1L, a novel isoform of CK1, inhibits hypotonicity-induced OREBP/TonEBP nuclear export. Together these data highlight the importance of Ser-155 and Ser-158 in the nucleocytoplasmic trafficking of OREBP/TonEBP and indicate that CK1 plays a major role in regulating this process.


Subject(s)
Casein Kinase I/metabolism , Gene Expression Regulation , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Cell Nucleus/metabolism , Cytoplasm/metabolism , HeLa Cells , Humans , Molecular Sequence Data , Osmosis , Phosphorylation , Protein Binding , Protein Isoforms , Sequence Homology, Amino Acid
18.
Mol Pharmacol ; 72(4): 826-37, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17600221

ABSTRACT

We report the discovery of an osmosensitive transcriptional control of human CYP3A4, CYP3A7, and CYP3A5. Ambient hypertonicity (350-450 mOsmol/kg) increased mRNA expressions of the CYP3A by approximately 10- to 20-fold in human-intestinal C(2)bbe1 cells, followed by an increase of CYP3A protein. Hypotonicity, on the other hand, suppressed CYP3A mRNA levels, indicating that physiological isotonic conditions may regulate the basal expression of CYP3A. Similar responses to ambient tonicity were observed in other human-derived cell lines (intestinal LS180 and hepatic HepG2) and human primary colonic cells. The 11-base pair tonicity-responsive enhancer (TonE) is an osmosensitive regulator that is activated by the transcription factor, the nuclear factor of activated T-cells 5 (NFAT5). Luciferase-based reporter assays of 13 consensus TonE motifs within +/-10 kilobases (kb) from the transcription start sites of CYP3A showed that only the CYP3A7 intron 2 region ( approximately 5 kb downstream from the transcription start site), which contains two TonE motifs (+5076/+5086 and + 5417/+5427), was responsive to hypertonicity stimuli. This observation was confirmed upon cotransfection with an NFAT5 expression vector, small interfering RNA, or dominant-negative NFAT5. Deletion and mutation analyses suggested that the TonE (+5417/+5427) is indispensable for the enhancer activity. NFAT5 binding to the CYP3A7 intron 2 TonE motif was demonstrated with electrophoretic mobility shift assay and in a native cell context by chromatin immunoprecipitation. We conclude that transcription of human CYP3A is influenced by ambient tonicity. The physiological significance of the tonic regulation of CYP3A enzymes remains to be determined.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Enzymologic/physiology , NFATC Transcription Factors/physiology , Transcription, Genetic/physiology , Cell Line , Cytochrome P-450 CYP3A , Humans , Osmolar Concentration
19.
ChemMedChem ; 2(10): 1464-79, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17768731

ABSTRACT

As the clinically used artemisinins do not withstand the thermal stress testing required to evaluate shelf life for storage in tropical countries where malaria is prevalent, there is a need to develop thermally more robust artemisinin derivatives. Herein we describe the attachment of electron-withdrawing arene- and alkanesulfonyl and -carbonyl groups to the nitrogen atom of the readily accessible Ziffer 11-azaartemisinin to provide the corresponding N-sulfonyl- and -carbonylazaartemisinins. Two acylurea analogues were also prepared by treatment of the 11-azaartemisinin with arylisocyanates. Several of the N-sulfonylazaartemisinins have melting points above 200 degrees C and possess substantially greater thermal stabilities than the artemisinins in current clinical use, with the antimalarial activities of several of the arylsulfonyl derivatives being similar to that of artesunate against the drug-sensitive 3D7 clone of the NF54 isolate and the multidrug-resistant K1 strain of P. falciparum. The compounds possess relatively low cytotoxicities. The carbonyl derivatives are less crystalline than the N-sulfonyl derivatives, but are generally more active as antimalarials. The N-nitroarylcarbonyl and arylurea derivatives possess sub-ng ml(-1) activities. Although several of the azaartemisinins possess log P values below 3.5, the compounds have poor aqueous solubility (<1 mg L(-1) at pH 7). The greatly enhanced thermal stability of our artemisinins suggests that strategic incorporation of electron-withdrawing polar groups into both new artemisinin derivatives and totally synthetic trioxanes or trioxolanes may assist in the generation of practical new antimalarial drugs which will be stable to storage conditions in the field, while retaining favorable physicochemical properties.


Subject(s)
Antimalarials/chemical synthesis , Artemisinins/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacology , Artemisinins/chemistry , Artemisinins/pharmacology , Drug Stability , Drug Storage , Hot Temperature , Solubility
20.
J Biol Chem ; 281(33): 23870-9, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-16782704

ABSTRACT

The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, regulates the hypertonicity-induced expression of a battery of genes crucial for the adaptation of mammalian cells to extracellular hypertonic stress. The activity of OREBP/TonEBP is regulated at multiple levels, including nucleocytoplasmic trafficking. OREBP/TonEBP protein can be detected in both the cytoplasm and nucleus under isotonic conditions, although it accumulates exclusively in the nucleus or cytoplasm when subjected to hypertonic or hypotonic challenges, respectively. Using immunocytochemistry and green fluorescent protein fusions, the protein domains that determine its subcellular localization were identified and characterized. We found that OREBP/TonEBP nuclear import is regulated by a nuclear localization signal. However, under isotonic conditions, nuclear export of OREBP/TonEBP is mediated by a CRM1-dependent, leucine-rich canonical nuclear export sequence (NES) located in the N terminus. Disruption of NES by site-directed mutagenesis yielded a mutant OREBP/TonEBP protein that accumulated in the nucleus under isotonic conditions but remained a target for hypotonicity-induced nuclear export. More importantly, a putative auxiliary export domain distal to the NES was identified. Disruption of the auxiliary export domain alone is sufficient to abolish the nuclear export of OREBP/TonEBP induced by hypotonicity. By using bimolecular fluorescence complementation assay, we showed that CRM1 interacts with OREBP/TonEBP, but not with a mutant protein deficient in NES. Our findings provide insight into how nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by changes in extracellular tonicity.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , NFATC Transcription Factors/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus/genetics , Amino Acid Sequence , Cell Nucleus/genetics , Cytoplasm/genetics , Extracellular Space/metabolism , HeLa Cells , Humans , Hypotonic Solutions , Isotonic Solutions , Karyopherins/physiology , Molecular Sequence Data , NFATC Transcription Factors/genetics , Nuclear Export Signals/physiology , Nuclear Localization Signals/physiology , Protein Structure, Tertiary/genetics , Protein Transport/genetics , Receptors, Cytoplasmic and Nuclear/physiology , Subcellular Fractions/metabolism , Trans-Activators/genetics , Transcription Factors/genetics , Exportin 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL