Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(7): 1465-1477.e18, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001505

ABSTRACT

Receptor activity-modifying proteins (RAMPs) modulate the activity of many Family B GPCRs. We show that RAMP2 directly interacts with the glucagon receptor (GCGR), a Family B GPCR responsible for blood sugar homeostasis, and broadly inhibits receptor-induced downstream signaling. HDX-MS experiments demonstrate that RAMP2 enhances local flexibility in select locations in and near the receptor extracellular domain (ECD) and in the 6th transmembrane helix, whereas smFRET experiments show that this ECD disorder results in the inhibition of active and intermediate states of the intracellular surface. We determined the cryo-EM structure of the GCGR-Gs complex at 2.9 Å resolution in the presence of RAMP2. RAMP2 apparently does not interact with GCGR in an ordered manner; however, the receptor ECD is indeed largely disordered along with rearrangements of several intracellular hallmarks of activation. Our studies suggest that RAMP2 acts as a negative allosteric modulator of GCGR by enhancing conformational sampling of the ECD.


Subject(s)
Glucagon , Receptors, Glucagon , Cell Membrane/metabolism , Glucagon/metabolism , Receptors, Glucagon/metabolism , Receptor Activity-Modifying Protein 2/metabolism
2.
Cell ; 185(24): 4560-4573.e19, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36368322

ABSTRACT

Binding of arrestin to phosphorylated G protein-coupled receptors (GPCRs) is crucial for modulating signaling. Once internalized, some GPCRs remain complexed with ß-arrestins, while others interact only transiently; this difference affects GPCR signaling and recycling. Cell-based and in vitro biophysical assays reveal the role of membrane phosphoinositides (PIPs) in ß-arrestin recruitment and GPCR-ß-arrestin complex dynamics. We find that GPCRs broadly stratify into two groups, one that requires PIP binding for ß-arrestin recruitment and one that does not. Plasma membrane PIPs potentiate an active conformation of ß-arrestin and stabilize GPCR-ß-arrestin complexes by promoting a fully engaged state of the complex. As allosteric modulators of GPCR-ß-arrestin complex dynamics, membrane PIPs allow for additional conformational diversity beyond that imposed by GPCR phosphorylation alone. For GPCRs that require membrane PIP binding for ß-arrestin recruitment, this provides a mechanism for ß-arrestin release upon translocation of the GPCR to endosomes, allowing for its rapid recycling.


Subject(s)
Arrestins , Phosphatidylinositols , beta-Arrestins/metabolism , Phosphatidylinositols/metabolism , Arrestins/metabolism , beta-Arrestin 1/metabolism , Receptors, G-Protein-Coupled/metabolism
3.
Cell ; 185(10): 1676-1693.e23, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35489334

ABSTRACT

Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.


Subject(s)
Cannabis , Cardiovascular Diseases , Hallucinogens , Analgesics , Animals , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Endothelial Cells , Genistein/pharmacology , Genistein/therapeutic use , Inflammation/drug therapy , Mice , Receptor, Cannabinoid, CB1 , Receptors, Cannabinoid
4.
Cell ; 183(7): 1813-1825.e18, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33296703

ABSTRACT

Binding of arrestin to phosphorylated G-protein-coupled receptors (GPCRs) controls many aspects of cell signaling. The number and arrangement of phosphates may vary substantially for a given GPCR, and different phosphorylation patterns trigger different arrestin-mediated effects. Here, we determine how GPCR phosphorylation influences arrestin behavior by using atomic-level simulations and site-directed spectroscopy to reveal the effects of phosphorylation patterns on arrestin binding and conformation. We find that patterns favoring binding differ from those favoring activation-associated conformational change. Both binding and conformation depend more on arrangement of phosphates than on their total number, with phosphorylation at different positions sometimes exerting opposite effects. Phosphorylation patterns selectively favor a wide variety of arrestin conformations, differently affecting arrestin sites implicated in scaffolding distinct signaling proteins. We also reveal molecular mechanisms of these phenomena. Our work reveals the structural basis for the long-standing "barcode" hypothesis and has important implications for design of functionally selective GPCR-targeted drugs.


Subject(s)
Arrestin/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Arrestin/chemistry , Computer Simulation , HEK293 Cells , Humans , Phosphates/metabolism , Phosphopeptides/metabolism , Phosphorylation , Protein Binding , Protein Conformation , Spectrum Analysis
5.
Cell ; 177(5): 1243-1251.e12, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31080070

ABSTRACT

The crystal structure of the ß2-adrenergic receptor (ß2AR) bound to the G protein adenylyl cyclase stimulatory G protein (Gs) captured the complex in a nucleotide-free state (ß2AR-Gsempty). Unfortunately, the ß2AR-Gsempty complex does not provide a clear explanation for G protein coupling specificity. Evidence from several sources suggests the existence of a transient complex between the ß2AR and GDP-bound Gs protein (ß2AR-GsGDP) that may represent an intermediate on the way to the formation of ß2AR-Gsempty and may contribute to coupling specificity. Here we present a structure of the ß2AR in complex with the carboxyl terminal 14 amino acids from Gαs along with the structure of the GDP-bound Gs heterotrimer. These structures provide evidence for an alternate interaction between the ß2AR and Gs that may represent an intermediate that contributes to Gs coupling specificity.


Subject(s)
Adenylyl Cyclases/chemistry , GTP-Binding Protein alpha Subunits, Gs/chemistry , Models, Molecular , Receptors, Adrenergic, beta-2/chemistry , Humans , Structure-Activity Relationship
6.
Cell ; 176(3): 468-478.e11, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30639099

ABSTRACT

"Biased" G protein-coupled receptor (GPCR) agonists preferentially activate pathways mediated by G proteins or ß-arrestins. Here, we use double electron-electron resonance spectroscopy to probe the changes that ligands induce in the conformational distribution of the angiotensin II type I receptor. Monitoring distances between 10 pairs of nitroxide labels distributed across the intracellular regions enabled mapping of four underlying sets of conformations. Ligands from different functional classes have distinct, characteristic effects on the conformational heterogeneity of the receptor. Compared to angiotensin II, the endogenous agonist, agonists with enhanced Gq coupling more strongly stabilize an "open" conformation with an accessible transducer-binding site. ß-arrestin-biased agonists deficient in Gq coupling do not stabilize this open conformation but instead favor two more occluded conformations. These data suggest a structural mechanism for biased ligand action at the angiotensin receptor that can be exploited to rationally design GPCR-targeting drugs with greater specificity of action.


Subject(s)
Angiotensins/metabolism , Receptor, Angiotensin, Type 1/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin Receptor Antagonists/metabolism , Arrestins/metabolism , Cell Line , Humans , Ligands , Protein Conformation , Receptors, Angiotensin/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Spectroscopy, Electron Energy-Loss/methods , beta-Arrestins/metabolism
7.
Cell ; 177(5): 1232-1242.e11, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31080064

ABSTRACT

The activation of G proteins by G protein-coupled receptors (GPCRs) underlies the majority of transmembrane signaling by hormones and neurotransmitters. Recent structures of GPCR-G protein complexes obtained by crystallography and cryoelectron microscopy (cryo-EM) reveal similar interactions between GPCRs and the alpha subunit of different G protein isoforms. While some G protein subtype-specific differences are observed, there is no clear structural explanation for G protein subtype-selectivity. All of these complexes are stabilized in the nucleotide-free state, a condition that does not exist in living cells. In an effort to better understand the structural basis of coupling specificity, we used time-resolved structural mass spectrometry techniques to investigate GPCR-G protein complex formation and G-protein activation. Our results suggest that coupling specificity is determined by one or more transient intermediate states that serve as selectivity filters and precede the formation of the stable nucleotide-free GPCR-G protein complexes observed in crystal and cryo-EM structures.


Subject(s)
GTP-Binding Proteins/chemistry , Multienzyme Complexes/chemistry , Receptors, G-Protein-Coupled/chemistry , Animals , Cattle , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Multienzyme Complexes/ultrastructure , Protein Structure, Quaternary , Rats
8.
Cell ; 176(3): 448-458.e12, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30639101

ABSTRACT

Cannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein Gi. Activation of CB1-Gi signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of Gi activation by CB1. Here, we present the structure of the CB1-Gi signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities. The structure illustrates how FUB stabilizes the receptor in an active state to facilitate nucleotide exchange in Gi. The results compose the structural framework to explain CB1 activation by different classes of ligands and provide insights into the G protein coupling and selectivity mechanisms adopted by the receptor.


Subject(s)
Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/ultrastructure , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Cryoelectron Microscopy/methods , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Indazoles/pharmacology , Ligands , Protein Binding , Receptor, Cannabinoid, CB1/chemistry , Receptors, Cannabinoid/chemistry , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/ultrastructure , Receptors, G-Protein-Coupled/metabolism , Sf9 Cells , Signal Transduction/drug effects
9.
Annu Rev Biochem ; 87: 897-919, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925258

ABSTRACT

G protein-coupled receptors (GPCRs) mediate the majority of cellular responses to external stimuli. Upon activation by a ligand, the receptor binds to a partner heterotrimeric G protein and promotes exchange of GTP for GDP, leading to dissociation of the G protein into α and ßγ subunits that mediate downstream signals. GPCRs can also activate distinct signaling pathways through arrestins. Active states of GPCRs form by small rearrangements of the ligand-binding, or orthosteric, site that are amplified into larger conformational changes. Molecular understanding of the allosteric coupling between ligand binding and G protein or arrestin interaction is emerging from structures of several GPCRs crystallized in inactive and active states, spectroscopic data, and computer simulations. The coupling is loose, rather than concerted, and agonist binding does not fully stabilize the receptor in an active conformation. Distinct intermediates whose populations are shifted by ligands of different efficacies underlie the complex pharmacology of GPCRs.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Allosteric Regulation , Binding Sites , Conserved Sequence , Crystallography, X-Ray , Energy Metabolism , Humans , Ligands , Models, Molecular , Protein Conformation , Receptors, G-Protein-Coupled/genetics
10.
Cell ; 169(3): 407-421.e16, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431242

ABSTRACT

The phosphorylation of agonist-occupied G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) functions to turn off G-protein signaling and turn on arrestin-mediated signaling. While a structural understanding of GPCR/G-protein and GPCR/arrestin complexes has emerged in recent years, the molecular architecture of a GPCR/GRK complex remains poorly defined. We used a comprehensive integrated approach of cross-linking, hydrogen-deuterium exchange mass spectrometry (MS), electron microscopy, mutagenesis, molecular dynamics simulations, and computational docking to analyze GRK5 interaction with the ß2-adrenergic receptor (ß2AR). These studies revealed a dynamic mechanism of complex formation that involves large conformational changes in the GRK5 RH/catalytic domain interface upon receptor binding. These changes facilitate contacts between intracellular loops 2 and 3 and the C terminus of the ß2AR with the GRK5 RH bundle subdomain, membrane-binding surface, and kinase catalytic cleft, respectively. These studies significantly contribute to our understanding of the mechanism by which GRKs regulate the function of activated GPCRs. PAPERCLIP.


Subject(s)
G-Protein-Coupled Receptor Kinase 5/chemistry , Mammals/metabolism , Receptors, Adrenergic, beta-2/chemistry , Animals , Camelids, New World , Cattle , G-Protein-Coupled Receptor Kinase 5/genetics , G-Protein-Coupled Receptor Kinase 5/metabolism , Humans , Mass Spectrometry , Microscopy, Electron , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Rats , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/metabolism
12.
Immunity ; 54(7): 1405-1416.e7, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34216564

ABSTRACT

Epstein-Barr virus (EBV) encodes a G protein-coupled receptor (GPCR) termed BILF1 that is essential for EBV-mediated immunosuppression and oncogenesis. BILF1 couples with inhibitory G protein (Gi), the major intracellular signaling effector for human chemokine receptors, and exhibits constitutive signaling activity; the ligand(s) for BILF1 are unknown. We studied the origins of BILF1's constitutive activity through structure determination of BILF1 bound to the inhibitory G protein (Gi) heterotrimer. The 3.2-Å resolution cryo-electron microscopy structure revealed an extracellular loop within BILF1 that blocked the typical chemokine binding site, suggesting ligand-autonomous receptor activation. Rather, amino acid substitutions within BILF1 transmembrane regions at hallmark ligand-activated class A GPCR "microswitches" stabilized a constitutively active BILF1 conformation for Gi coupling in a ligand-independent fashion. Thus, the constitutive activity of BILF1 promotes immunosuppression and virulence independent of ligand availability, with implications for the function of GPCRs encoded by related viruses and for therapeutic targeting of EBV.


Subject(s)
Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Immunologic Factors/immunology , Receptors, G-Protein-Coupled/immunology , Viral Proteins/immunology , Animals , Binding Sites/immunology , Cell Line , Chemokines/immunology , Cryoelectron Microscopy/methods , Epstein-Barr Virus Infections/virology , HEK293 Cells , Humans , Protein Binding/immunology , Sf9 Cells , Signal Transduction/immunology
13.
Cell ; 161(5): 1101-1111, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25981665

ABSTRACT

G-protein-coupled receptors (GPCRs) transduce signals from the extracellular environment to intracellular proteins. To gain structural insight into the regulation of receptor cytoplasmic conformations by extracellular ligands during signaling, we examine the structural dynamics of the cytoplasmic domain of the ß2-adrenergic receptor (ß2AR) using (19)F-fluorine NMR and double electron-electron resonance spectroscopy. These studies show that unliganded and inverse-agonist-bound ß2AR exists predominantly in two inactive conformations that exchange within hundreds of microseconds. Although agonists shift the equilibrium toward a conformation capable of engaging cytoplasmic G proteins, they do so incompletely, resulting in increased conformational heterogeneity and the coexistence of inactive, intermediate, and active states. Complete transition to the active conformation requires subsequent interaction with a G protein or an intracellular G protein mimetic. These studies demonstrate a loose allosteric coupling of the agonist-binding site and G-protein-coupling interface that may generally be responsible for the complex signaling behavior observed for many GPCRs.


Subject(s)
Receptors, Adrenergic, beta-2/metabolism , Signal Transduction , Adrenergic beta-Agonists/pharmacology , Amino Acid Sequence , Benzoxazines/pharmacology , Humans , Isoproterenol/metabolism , Isoproterenol/pharmacology , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Receptors, Adrenergic, beta-2/chemistry
14.
Nature ; 629(8011): 474-480, 2024 May.
Article in English | MEDLINE | ID: mdl-38600384

ABSTRACT

The µ-opioid receptor (µOR) is an important target for pain management1 and molecular understanding of drug action on µOR will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance and single-molecule fluorescence resonance energy transfer, how ligand-specific conformational changes of µOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several conformations of the cytoplasmic face of the receptor that interconvert on different timescales, including a pre-activated conformation that is capable of G-protein binding, and a fully activated conformation that markedly reduces GDP affinity within the ternary complex. Interaction of ß-arrestin-1 with the µOR core binding site appears less specific and occurs with much lower affinity than binding of Gi.


Subject(s)
Ligands , Protein Conformation , Receptors, Opioid, mu , Humans , beta-Arrestin 1/chemistry , beta-Arrestin 1/metabolism , Binding Sites , Fluorescence Resonance Energy Transfer , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Guanosine Diphosphate/metabolism , Guanosine Diphosphate/chemistry , Models, Molecular , Protein Binding , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/chemistry , Single Molecule Imaging
15.
Nature ; 629(8013): 951-956, 2024 May.
Article in English | MEDLINE | ID: mdl-38632403

ABSTRACT

Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain that is linked via a cysteine-rich domain to their 7-transmembrane domain1. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the extracellular ligand-binding domain to the G protein-coupling 7-transmembrane domain2. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging, we reveal distinct receptor conformations upon allosteric modulator and G protein binding.


Subject(s)
Ligands , Protein Domains , Receptor, Metabotropic Glutamate 5 , Humans , Allosteric Regulation/drug effects , Fluorescence , Models, Molecular , Protein Binding , Receptor, Metabotropic Glutamate 5/agonists , Receptor, Metabotropic Glutamate 5/chemistry , Receptor, Metabotropic Glutamate 5/metabolism , Single Molecule Imaging , Heterotrimeric GTP-Binding Proteins/metabolism
16.
Nature ; 629(8014): 1182-1191, 2024 May.
Article in English | MEDLINE | ID: mdl-38480881

ABSTRACT

G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the ß2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα switch regions and the α5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the α-helical domain against the nucleotide-bound Ras-homology domain correlates with α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.


Subject(s)
Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gs , Receptors, Adrenergic, beta-2 , Humans , Binding Sites , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/drug effects , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/pharmacology , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/ultrastructure , Time Factors , Enzyme Activation/drug effects , Protein Domains , Protein Structure, Secondary , Signal Transduction/drug effects
17.
Nature ; 631(8021): 686-693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961287

ABSTRACT

The µ-opioid receptor (µOR) is a well-established target for analgesia1, yet conventional opioid receptor agonists cause serious adverse effects, notably addiction and respiratory depression. These factors have contributed to the current opioid overdose epidemic driven by fentanyl2, a highly potent synthetic opioid. µOR negative allosteric modulators (NAMs) may serve as useful tools in preventing opioid overdose deaths, but promising chemical scaffolds remain elusive. Here we screened a large DNA-encoded chemical library against inactive µOR, counter-screening with active, G-protein and agonist-bound receptor to 'steer' hits towards conformationally selective modulators. We discovered a NAM compound with high and selective enrichment to inactive µOR that enhances the affinity of the key opioid overdose reversal molecule, naloxone. The NAM works cooperatively with naloxone to potently block opioid agonist signalling. Using cryogenic electron microscopy, we demonstrate that the NAM accomplishes this effect by binding a site on the extracellular vestibule in direct contact with naloxone while stabilizing a distinct inactive conformation of the extracellular portions of the second and seventh transmembrane helices. The NAM alters orthosteric ligand kinetics in therapeutically desirable ways and works cooperatively with low doses of naloxone to effectively inhibit various morphine-induced and fentanyl-induced behavioural effects in vivo while minimizing withdrawal behaviours. Our results provide detailed structural insights into the mechanism of negative allosteric modulation of the µOR and demonstrate how this can be exploited in vivo.


Subject(s)
Cryoelectron Microscopy , Morphine , Naloxone , Receptors, Opioid, mu , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/chemistry , Naloxone/pharmacology , Animals , Mice , Allosteric Regulation/drug effects , Humans , Morphine/pharmacology , Morphine/chemistry , Male , Models, Molecular , Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Analgesics, Opioid/metabolism , Narcotic Antagonists/pharmacology , Narcotic Antagonists/chemistry , Ligands , Female , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Opiate Overdose/drug therapy , Kinetics , Fentanyl/chemistry , Fentanyl/pharmacology , Fentanyl/analogs & derivatives
18.
Nature ; 613(7945): 767-774, 2023 01.
Article in English | MEDLINE | ID: mdl-36450356

ABSTRACT

Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.


Subject(s)
Drug Design , Fentanyl , Morphinans , Receptors, Opioid, mu , Animals , Mice , Analgesics, Opioid/chemistry , Analgesics, Opioid/metabolism , Arrestins/metabolism , Cryoelectron Microscopy , Fentanyl/analogs & derivatives , Fentanyl/chemistry , Fentanyl/metabolism , Ligands , Morphinans/chemistry , Morphinans/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/chemistry , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/ultrastructure , Binding Sites , Nociception
19.
Cell ; 152(3): 532-42, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23374348

ABSTRACT

G-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the ß(2)-adrenergic receptor (ß(2)AR), a prototypical GPCR. We labeled ß(2)AR with (13)CH(3)ε-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G-protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonist- and inverse-agonist-bound preparations. They also show that for ß(2)AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-protein-coupling surface is not rigid. The observed heterogeneity may be important for ß(2)AR's ability to engage multiple signaling and regulatory proteins.


Subject(s)
Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Adrenergic beta-2 Receptor Agonists/metabolism , Amino Acid Sequence , Humans , Molecular Sequence Data , Protein Conformation , Signal Transduction , Thermodynamics
20.
Nature ; 595(7867): 450-454, 2021 07.
Article in English | MEDLINE | ID: mdl-34194039

ABSTRACT

Family C G-protein-coupled receptors (GPCRs) operate as obligate dimers with extracellular domains that recognize small ligands, leading to G-protein activation on the transmembrane (TM) domains of these receptors by an unknown mechanism1. Here we show structures of homodimers of the family C metabotropic glutamate receptor 2 (mGlu2) in distinct functional states and in complex with heterotrimeric Gi. Upon activation of the extracellular domain, the two transmembrane domains undergo extensive rearrangement in relative orientation to establish an asymmetric TM6-TM6 interface that promotes conformational changes in the cytoplasmic domain of one protomer. Nucleotide-bound Gi can be observed pre-coupled to inactive mGlu2, but its transition to the nucleotide-free form seems to depend on establishing the active-state TM6-TM6 interface. In contrast to family A and B GPCRs, G-protein coupling does not involve the cytoplasmic opening of TM6 but is facilitated through the coordination of intracellular loops 2 and 3, as well as a critical contribution from the C terminus of the receptor. The findings highlight the synergy of global and local conformational transitions to facilitate a new mode of G-protein activation.


Subject(s)
Heterotrimeric GTP-Binding Proteins/metabolism , Receptors, Metabotropic Glutamate/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Heterotrimeric GTP-Binding Proteins/chemistry , Humans , Models, Molecular , Protein Multimerization , Receptors, Metabotropic Glutamate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL