Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Appl Opt ; 58(27): 7352-7358, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31674379

ABSTRACT

Here, we investigate scanning photothermal microspectroscopic imaging of metal nanoparticles with reflective objectives. We show that correction-less collection of spectra from single spherical nanoparticles embedded in a polymer is possible over a wide spectral band, with large depth of focus, long working distance, and high lateral spatial resolution. We posit that these beneficial characteristics are inherent of the Bessel-Gauss character of the focused beam. When compared with other types of optical microscopy, the combination of these characteristics give photothermal imaging with reflective objectives unique appeal for material characterization applications.

2.
J Phys Chem Lett ; 6(18): 3621-5, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26722732

ABSTRACT

Many nanoparticle applications require molecular adlayers that impart desirable interfacial characteristics. Such characteristics are crucial in controlling the interaction of the nanoparticle with the environment or other nanoparticles; however, departures from bulk values are expected for adlayer properties and in situ methods to evaluate the magnitude of these departures, preferably on the scale of a single nanoparticle, are needed. Here we investigate the potential of single-particle photothermal microscopy for measuring the thermal properties of nanoparticle-supported, layer-by-layer grown polyelectrolytes. We show that nanometer changes in adlayer thickness can be detected this way, and the water content of the nanoparticle-supported adlayers can be estimated.

3.
ACS Nano ; 5(9): 7324-33, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21854038

ABSTRACT

Virus life stages often constitute a complex chain of events, difficult to track in vivo and in real-time. Challenges are associated with spatial and time limitations of current probes: most viruses are smaller than the diffraction limit of optical microscopes while the entire time scale of virus dynamics spans over 8 orders of magnitude. Thus, virus processes such as entry, disassembly, and egress have generally remained poorly understood. Here we discuss photothermal heterodyne imaging (PHI) as a possible alternative to fluorescence microscopy in the study of single virus-like nanoparticle (VNP) dynamics, with relevance in particular to virus uncoating. Being based on optical absorption rather than emission, PHI could potentially surpass some of the current limitations associated with fluorescent labels. As proof-of-principle, single VNPs self-assembled from 60 nm DNA-functionalized gold nanoparticles (DNA-Au NPs) encapsulated in a Gag protein shell of the human immunodeficiency virus (HIV-1) were imaged, and their photothermal response was compared with DNA-Au NPs. For the first time, the protein stoichiometry of a single virus-like particle was estimated by a method other than electron microscopy.


Subject(s)
Gene Products, gag/chemistry , HIV-1/chemistry , Nanoparticles , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL