Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Environ Technol ; 42(16): 2447-2460, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31928330

ABSTRACT

The utilization of foul condensate (FC) collected from a Kraft pulp mill for the anaerobic production of volatile fatty acids (VFA) was tested in upflow anaerobic sludge blanket (UASB) reactors operated at 22, 37 and 55°C at a hydraulic retention time (HRT) of ∼75 h. The FC consisted mainly of 11370, 500 and 592 mg/L methanol, ethanol and acetone, respectively. 42-46% of the organic carbon (methanol, ethanol and acetone) was utilized in the UASB reactors operated at an organic loading of ∼8.6 gCOD/L.d and 52-70% of the utilized organic carbon was converted into VFA. Along with acetate, also propionate, isobutyrate, butyrate, isovalerate and valerate were produced from the FC. Prior to acetogenesis of FC, enrichment of the acetogenic biomass was carried out in the UASB reactors for 113 d by applying operational parameters that inhibit methanogenesis and induce acetogenesis. Activity tests after 158 d of reactor operation showed that the biomass from the 55°C UASB reactor exhibited the highest activity after the FC feed compared to the biomass from the reactors at 22 and 37°C. Activity tests at 37°C to compare FC utilization for CH4 versus VFA production showed that an organic carbon utilization >98% for CH4 production occurred in batch bottles, whereas the VFA production batch bottles showed 51% organic carbon utilization. Furthermore, higher concentrations of C3-C5 VFA were produced when FC was the substrate compared to synthetic methanol rich wastewater.


Subject(s)
Sewage , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Fatty Acids, Volatile
2.
Bioelectrochemistry ; 132: 107402, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31830669

ABSTRACT

Start-up of bioelectrochemical systems (BESs) fed with brewery wastewater was compared at different adjusted anode potentials (-200 and 0 mV vs. Ag/AgCl) and external resistances (50 and 1000 Ω). Current generation stabilized faster with the external resistances (9 ± 3 and 1.70 ± 0.04 A/m3 with 50 and 1000 Ω, respectively), whilst significantly higher current densities of 76 ± 39 and 44 ± 9 A/m3 were obtained with the adjusted anode potentials of -200 and 0 mV vs. Ag/AgCl, respectively. After start-up, when operated using 47 Ω external resistance, the current densities and Coulombic efficiencies of all BESs stabilized to 9.5 ± 2.9 A/m3 and 12 ± 2%, respectively, demonstrating that the start-up protocols were not critical for long-term BES operation in microbial fuel cell mode. With adjusted anode potentials, two times more biofilm biomass (measured as protein) was formed by the end of the experiment as compared to start-up with the fixed external resistances. After start-up, the organics in the brewery wastewater, mainly sugars and alcohols, were transformed to acetate (1360 ± 250 mg/L) and propionate (610 ± 190 mg/L). Optimized start-up is required for prompt BES recovery, for example, after process disturbances. Based on the results of this study, adjustment of anode potential to -200 mV vs. Ag/AgCl is recommended for fast BES start-up.


Subject(s)
Beer , Electrochemical Techniques/instrumentation , Food Industry/instrumentation , Wastewater/chemistry , Biological Oxygen Demand Analysis , Biomass , Electrodes , Microbiota , Wastewater/microbiology
3.
Bioresour Technol ; 226: 173-180, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27997871

ABSTRACT

The effect of poised anode potential on electricity production and tetrathionate degradation was studied in two-chamber flow-through electrochemical (ES) and bioelectrochemical systems (BES). The minimum anode potential (vs. Ag/AgCl) for positive current generation was 0.3V in BES and 0.5V in the abiotic ES. The anode potential required to obtain average current density above 70mAm-2 was 0.4V in BES and above 0.7V in ES. ES provided higher coulombic efficiency, but the average tetrathionate degradation rate remained significantly higher in BES (above 110mgL-1d-1) than in the abiotic ES (below 35mgL-1d-1). This study shows that at anode potentials below 0.7V, the electrochemical tetrathionate degradation is only efficient with microbial catalyst and that significantly higher tetrathionate degradation rates can be obtained with bioelectrochemical systems than with electrochemical systems at the tested anode potentials.


Subject(s)
Bioelectric Energy Sources , Electrochemical Techniques , Tetrathionic Acid/chemistry , Catalysis , Electrodes , Hydrogen-Ion Concentration
4.
Adv Biochem Eng Biotechnol ; 156: 263-292, 2016.
Article in English | MEDLINE | ID: mdl-26907547

ABSTRACT

In bioelectrochemical systems (BES), the catalytic activity of anaerobic microorganisms generates electrons at the anode which can be used, for example, for the production of electricity or chemical compounds. BES can be used for various purposes, including wastewater treatment, production of electricity, fuels and chemicals, biosensors, bioremediation, and desalination. Electrochemically active microorganisms are widely present in the environment and they can be found, in sediment, soil, compost, wastewaters and their treatment plants. Exoelectrogens are microorganisms capable of donating electrons to anode electrode or accepting electrons from cathode electrode and are mainly responsible for current generation or use in BES. However, current generation from fermentable substrates often requires the presence of electrochemically inactive microorganisms that break down complex substrates into metabolites which can be further utilized by exoelectrogens. The growth and electron transfer efficiency of anaerobes depend on several parameters, such as system architecture, electrode material and porosity, electrode potential and external resistance, pH, temperature, substrate concentration, organic loading rate, and ionic strength. In this chapter, the principles and microbiology of bioelectrochemical systems as well as selective factors for exoelectrogens are reviewed. The anaerobic microorganisms and their electron transfer mechanisms at the anode and cathode are described and future aspects are briefly discussed.


Subject(s)
Bacteria, Anaerobic/physiology , Bioelectric Energy Sources/microbiology , Biological Assay/instrumentation , Biosensing Techniques/instrumentation , Electrochemistry/instrumentation , Electrodes/microbiology , Energy Transfer/physiology , Equipment Design , Technology Assessment, Biomedical
5.
Bioresour Technol ; 216: 876-82, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27318661

ABSTRACT

To prevent uncontrolled acidification of the environment, reduced inorganic sulfur compounds (RISCs) can be bioelectrochemically removed from water streams. The long-term stability of bioelectricity production from tetrathionate (S4O6(2-)) was studied in highly acidic conditions (pH<2.5) in two-chamber fed-batch microbial fuel cells (MFCs). The maximum current density was improved from previously reported 80mAm(-2) to 225mAm(-2) by optimizing the external resistance. The observed reaction products of tetrathionate disproportionation were sulfate and elemental sulfur. In long-term run, stable electricity production was obtained for over 700days with the average current density of 150mAm(-2). The internal resistance of the MFC decreased over time and no biofouling was observed. This study shows that tetrathionate is an efficient substrate also for long-term bioelectricity production.


Subject(s)
Bioelectric Energy Sources , Tetrathionic Acid/chemistry , Electricity , Sulfur/chemistry
6.
J Hazard Mater ; 306: 124-132, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26705889

ABSTRACT

Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH<2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment.


Subject(s)
Arsenic/chemistry , Ferric Compounds/chemistry , Sulfates/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Bioreactors , Chemical Precipitation , Ferric Compounds/metabolism , Hydrogen-Ion Concentration , Iron/metabolism , Solutions , Sulfates/metabolism
7.
J Hazard Mater ; 284: 182-9, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25463232

ABSTRACT

Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5.


Subject(s)
Acidithiobacillus/metabolism , Bioelectric Energy Sources , Electrochemistry/methods , Tetrathionic Acid/chemistry , Thiones/chemistry , Biodegradation, Environmental , Electricity , Electrodes , Electrons , Hydrogen-Ion Concentration , Microbiota , Oxidation-Reduction , Oxygen/chemistry , Sulfur/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL