Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Funct Biomater ; 13(4)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36547558

ABSTRACT

The barrier membrane plays an extremely critical role in guided bone regeneration (GBR), which determines the success or failure of GBR technology. In order to obtain barrier membranes with high mechanical strength and degradability, some researchers have focused on degradable magnesium alloys. However, the degradation rate of pure Mg-based materials in body fluids is rather fast, thus posing an urgent problem to be solved in oral clinics. In this study, a novel micro-arc oxidation (MAO) surface-treated pure Mg membrane was prepared. Electrochemical tests, immersion experiments and in vivo experiments were carried out to investigate its potential use as a barrier membrane. The experimental results showed that the corrosion resistance of a pure Mg membrane treated by MAO is better than that of the uncoated pure Mg. The results of cell experiments showed no obvious cytotoxicity, which suggests the enhanced differentiation of osteoblasts. At the same time, the MAO-Mg membrane showed better biological activity than the pure Ti membrane in the early stage of implantation, exhibiting relatively good bone regeneration ability. Consequently, the MAO membrane has been proven to possess good application prospects for guided bone regeneration.

2.
Materials (Basel) ; 15(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35057344

ABSTRACT

Effects of different rare earth elements on the degradation and mechanical properties of the ECAP (equal channel angular pressing) extruded Mg alloys were investigated in this work. Microstructural characterization, thermodynamic calculation, a tensile test, an electrochemical test, an immersion test, a hydrogen evolution test and a cytotoxicity test were carried out. The results showed that yttrium addition was beneficial to the improvement of the alloy's strength, and the ultimate tensile strength (UTS) and yield strength (YS) values of the ECAPed Mg-2Zn-0.5Y-0.5Zr alloy reached 315 MPa and 295 MPa, respectively. In addition, Nd was beneficial to the corrosion resistance, for which, the corrosion rate of the ECAPed Mg-2Zn-0.5Nd-0.5Zr alloy was observed to be 0.42 ± 0.04 mm/year in Hank's solution after 14 days of immersion. Gd was moderate in improving both the corrosion resistance and mechanical properties. Moreover, after co-culturing with murine calvarial preosteoblasts (MC3T3-E1) cells, the ECAPed Mg-2Zn-0.5RE (Nd, Gd, Y)-0.5Zr alloys exhibited good cytocompatibility with a grade 1 cytotoxicity. Consequently, the ECAPed Mg-2Zn-0.5Nd-0.5Zr alloy showed the best application prospect in the field of orthopedics.

3.
Materials (Basel) ; 15(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35888498

ABSTRACT

In recent years, biodegradable magnesium (Mg) alloys have attracted the attention of many researchers due to their mechanical properties, excellent biocompatibility and unique biodegradability. Many Mg alloy implants have been successfully applied in clinical medicine, and they are considered to be promising biological materials. In this article, we review the latest research progress in biodegradable Mg alloys, including research on high-performance Mg alloys, bioactive coatings and actual or potential clinical applications of Mg alloys. Finally, we review the research and development direction of biodegradable Mg alloys. This article has a guiding significance for future development and application of high-performance biodegradable Mg alloys, promoting the future advancement of the magnesium alloy research field, especially in biomedicine.

4.
ACS Biomater Sci Eng ; 6(3): 1355-1366, 2020 03 09.
Article in English | MEDLINE | ID: mdl-33455366

ABSTRACT

Implant-related infections are a major concern in total joint prostheses, occurring up to 3% in operations. In this work, 5% Zn2+ was added in HA to offset bacterial activity and 5% Sr2+ was also incorporated as a binary dopant to reduce the cytotoxic effect of Zn2+. The nanosized HA powder was synthesized by the hydrothermal method and then heat-treated at 600 °C for 4 h. The heat-treated powder was plasma-sprayed on a titanium alloy Ti-6Al-4V substrate. The addition of the dopant did not significantly influence the physical and mechanical properties of the coating. However, the cytocompatibility, antimicrobial, and contact-angle properties statistically enhanced. Moreover, the (Sr,Zn)-HA coating was post-heat treated at 500 and 600 °C for 3 h. X-ray diffraction confirmed that after heat treatment phase purity and crystallinity increased and residual stress decreased. Mechanical stability was evaluated by adhesive bond strength, and the results showed that after heat-treatment bonding strength increased from 26.81 ± 2.93 to 29.84 ± 3.62 and 34.66 ± 2.57 MPa, at 500 and 600 °C, respectively. Similar to the mechanical property, antibacterial activities and biological functions are also significantly improved. More interestingly, it was also observed that the Zn2+ ions released from the coating depend on Ca2+, P, and Sr2+ ions while Ca2+, P, and Sr2+ ions relied on heat treatment temperatures. However, (Sr,Zn)-HA coating at 600 °C demonstrates cytotoxic effects on MC3T3-E1 cells, characterized by poor cellular morphology on the coating surface and ultimately, cell death. The doping of Sr2+ with Zn2+, therefore, can offset the cytotoxic effects and enhanced biological performance. All of the outcomes of this study signify that (Sr,Zn)-HA coating heat-treated at 500 °C showed not only excellent mechanical and biological performance but also enhanced the antibacterial properties.


Subject(s)
Anti-Infective Agents , Durapatite , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible , Zinc/pharmacology
5.
Colloids Surf B Biointerfaces ; 189: 110858, 2020 May.
Article in English | MEDLINE | ID: mdl-32086021

ABSTRACT

The corrosion behaviour of X80 pipeline steel was studied in a simulated marine environment inoculated with marine bacterium Marinobacter salsuginis. The electrochemical results showed that the increase in linear polarization resistance, charge transfer resistance, and the decrease in corrosion current density of the X80 pipeline steel immersed in the biotic medium indicated its high corrosion resistance compared to those in the abiotic medium. Surface morphological techniques including scanning electron microscopy, confocal laser scanning microscopy and live/dead cells staining were employed to observe the biofilm morphology and bacterial viability after different immersion times. X-ray photoelectron spectroscopy was used to analyse the oxides film formed on the steel surface. The obtained results indicated that the corrosion inhibition efficiency was obviously higher in the biotic medium compared to that in the abiotic medium. The high corrosion resistance of X80 steel in biotic medium was attributed to the formation of biofilm and the development of extracellular polymeric substances (EPS) layer on its surface.


Subject(s)
Marinobacter/metabolism , Steel/chemistry , Biofilms/growth & development , Corrosion , Electrochemical Techniques , Marinobacter/chemistry , Particle Size , Surface Properties
6.
ACS Appl Mater Interfaces ; 11(1): 125-136, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30540429

ABSTRACT

In order to develop a novel kind of antibacterial Cu-containing TiN film with good corrosion resistance, impressive mechanical properties, and low cytotoxicity, three differently designed multilayer films of TiCu/TiCuN multilayer (M1, M2, M3) were deposited on the surface of 316L stainless steel surface using the axial magnetic field-enhanced arc ion plating (AMFE-ARP) method, in which the interlayer of TiCu was first introduced for Cu-containing TiN film in order to improve comprehensive properties, especially the corrosion resistance of the film. The performance of the TiCu/TiCuN multilayer films was compared with that of the two single layers, TiN and TiCuN, which were deposited by the same method and the same total deposition time. The results indicated that the TiCu/TiCuN multilayer film of M2 revealed the best comprehensive corrosion resistance with low electric current values, high pitting potential, and high polarization resistance due to the proper thickness of TiCu interlayers and larger number of TiCu/TiCuN bilayers. In addition, the TiCu/TiCuN multilayer film of M2 also possesses comparable mechanical properties, excellent antibacterial and antibiofilm abilities, as well as good biocompatibility. Consequently, the antibacterial TiCu/TiCuN multilayer films with good corrosion resistance deposited by using the axial magnetic field-enhanced arc ion plating (AMFE-ARP) method are promising for application in biomedical antibacterial film for implants.


Subject(s)
Anti-Bacterial Agents/chemistry , Biofilms/growth & development , Coated Materials, Biocompatible/chemistry , Copper/chemistry , Escherichia coli/physiology , Membranes, Artificial , Staphylococcus aureus/physiology , Titanium/chemistry , Animals , Cell Line , Corrosion , Mice
SELECTION OF CITATIONS
SEARCH DETAIL