Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36323312

ABSTRACT

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Subject(s)
Interleukin-4 , Lipopolysaccharides , Mice , Animals , Interleukin-4/metabolism , Lipopolysaccharides/metabolism , Ligands , Epigenomics , Macrophages/metabolism , Toll-Like Receptors/metabolism , Epigenesis, Genetic , NF-kappa B/metabolism
2.
Genes Dev ; 34(21-22): 1474-1492, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33060136

ABSTRACT

Macrophages polarize into functionally distinct subtypes while responding to microenvironmental cues. The identity of proximal transcription factors (TFs) downstream from the polarization signals are known, but their activity is typically transient, failing to explain the long-term, stable epigenomic programs developed. Here, we mapped the early and late epigenomic changes of interleukin-4 (IL-4)-induced alternative macrophage polarization. We identified the TF, early growth response 2 (EGR2), bridging the early transient and late stable gene expression program of polarization. EGR2 is a direct target of IL-4-activated STAT6, having broad action indispensable for 77% of the induced gene signature of alternative polarization, including its autoregulation and a robust, downstream TF cascade involving PPARG. Mechanistically, EGR2 binding results in chromatin opening and the recruitment of chromatin remodelers and RNA polymerase II. Egr2 induction is evolutionarily conserved during alternative polarization of mouse and human macrophages. In the context of tissue resident macrophages, Egr2 expression is most prominent in the lung of a variety of species. Thus, EGR2 is an example of an essential and evolutionarily conserved broad acting factor, linking transient polarization signals to stable epigenomic and transcriptional changes in macrophages.


Subject(s)
Cell Polarity/genetics , Early Growth Response Protein 2/genetics , Early Growth Response Protein 2/metabolism , Epigenesis, Genetic/genetics , Macrophages/cytology , STAT6 Transcription Factor/metabolism , Transcriptional Activation/genetics , Animals , Chromosome Mapping , Conserved Sequence , Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Genome/genetics , Humans , Interleukin-4/metabolism , Macrophages/physiology , Mice , Mice, Inbred C57BL , Protein Interaction Domains and Motifs/genetics , STAT6 Transcription Factor/genetics , Transcriptome/genetics
3.
Immunity ; 49(4): 615-626.e6, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30332629

ABSTRACT

Macrophages polarize into distinct phenotypes in response to complex environmental cues. We found that the nuclear receptor PPARγ drove robust phenotypic changes in macrophages upon repeated stimulation with interleukin (IL)-4. The functions of PPARγ on macrophage polarization in this setting were independent of ligand binding. Ligand-insensitive PPARγ bound DNA and recruited the coactivator P300 and the architectural protein RAD21. This established a permissive chromatin environment that conferred transcriptional memory by facilitating the binding of the transcriptional regulator STAT6 and RNA polymerase II, leading to robust production of enhancer and mRNAs upon IL-4 re-stimulation. Ligand-insensitive PPARγ binding controlled the expression of an extracellular matrix remodeling-related gene network in macrophages. Expression of these genes increased during muscle regeneration in a mouse model of injury, and this increase coincided with the detection of IL-4 and PPARγ in the affected tissue. Thus, a predominantly ligand-insensitive PPARγ:RXR cistrome regulates progressive and/or reinforcing macrophage polarization.


Subject(s)
Epigenesis, Genetic/immunology , Epigenomics/methods , Gene Expression Regulation/immunology , Macrophage Activation/immunology , Macrophages/immunology , PPAR gamma/immunology , Animals , Cell Line , Cells, Cultured , Interleukin-4/immunology , Interleukin-4/pharmacology , Ligands , Macrophage Activation/genetics , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , PPAR gamma/genetics , PPAR gamma/metabolism
4.
J Biol Chem ; 295(29): 10045-10061, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32513869

ABSTRACT

Retinoid X receptor (RXR) plays a pivotal role as a transcriptional regulator and serves as an obligatory heterodimerization partner for at least 20 other nuclear receptors (NRs). Given a potentially limiting/sequestered pool of RXR and simultaneous expression of several RXR partners, we hypothesized that NRs compete for binding to RXR and that this competition is directed by specific agonist treatment. Here, we tested this hypothesis on three NRs: peroxisome proliferator-activated receptor gamma (PPARγ), vitamin D receptor (VDR), and retinoic acid receptor alpha (RARα). The evaluation of competition relied on a nuclear translocation assay applied in a three-color imaging model system by detecting changes in heterodimerization between RXRα and one of its partners (NR1) in the presence of another competing partner (NR2). Our results indicated dynamic competition between the NRs governed by two mechanisms. First, in the absence of agonist treatment, there is a hierarchy of affinities between RXRα and its partners in the following order: RARα > PPARγ > VDR. Second, upon agonist treatment, RXRα favors the liganded partner. We conclude that recruiting RXRα by the liganded NR not only facilitates a stimulus-specific cellular response but also might impede other NR pathways involving RXRα.


Subject(s)
PPAR gamma/metabolism , Protein Multimerization , Receptors, Calcitriol/metabolism , Retinoic Acid Receptor alpha/metabolism , Retinoid X Receptor alpha/metabolism , HEK293 Cells , Humans , PPAR gamma/genetics , Receptors, Calcitriol/genetics , Retinoic Acid Receptor alpha/genetics , Retinoid X Receptor alpha/genetics
5.
Proc Natl Acad Sci U S A ; 114(40): 10725-10730, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28923935

ABSTRACT

Retinoid X receptor (RXR) regulates several key functions in myeloid cells, including inflammatory responses, phagocytosis, chemokine secretion, and proangiogenic activity. Its importance, however, in tumor-associated myeloid cells is unknown. In this study, we demonstrate that deletion of RXR in myeloid cells enhances lung metastasis formation while not affecting primary tumor growth. We show that RXR deficiency leads to transcriptomic changes in the lung myeloid compartment characterized by increased expression of prometastatic genes, including important determinants of premetastatic niche formation. Accordingly, RXR-deficient myeloid cells are more efficient in promoting cancer cell migration and invasion. Our results suggest that the repressive activity of RXR on prometastatic genes is mediated primarily through direct DNA binding of the receptor along with nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors and is largely unresponsive to ligand activation. In addition, we found that expression and transcriptional activity of RXRα is down-modulated in peripheral blood mononuclear cells of patients with lung cancer, particularly in advanced and metastatic disease. Overall, our results identify RXR as a regulator in the myeloid cell-assisted metastatic process and establish lipid-sensing nuclear receptors in the microenvironmental regulation of tumor progression.


Subject(s)
Carcinoma, Lewis Lung/pathology , Lung Neoplasms/secondary , Melanoma, Experimental/pathology , Myeloid Cells/pathology , Retinoid X Receptors/physiology , Transcription, Genetic , Animals , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/metabolism , Cells, Cultured , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Ligands , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Protein Binding , Repressor Proteins/genetics , Repressor Proteins/metabolism
6.
J Neurosci ; 38(35): 7683-7700, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30054395

ABSTRACT

Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.


Subject(s)
DNA Damage/physiology , Motor Neurons/enzymology , Protein-Arginine N-Methyltransferases/physiology , Aging/metabolism , Amino Acid Sequence , Animals , Arginine/analogs & derivatives , Arginine/metabolism , Cell Line , Cyclic AMP Response Element-Binding Protein/physiology , DNA Breaks, Double-Stranded , DNA Repair , Isometric Contraction , Male , Mice , Mice, Knockout , Mice, Transgenic , Muscle Cells/enzymology , Muscle Cells/physiology , Neuromuscular Junction/metabolism , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/deficiency , Protein-Arginine N-Methyltransferases/genetics , RNA Interference , RNA, Small Interfering/pharmacology , Recombinant Fusion Proteins/metabolism , Reflex, Abnormal , Rotarod Performance Test , Spinal Cord/cytology , Spinal Cord/growth & development
7.
JCI Insight ; 9(17)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39042472

ABSTRACT

Alveolar macrophages (AMs) act as gatekeepers of the lung's immune responses, serving essential roles in recognizing and eliminating pathogens. The transcription factor (TF) early growth response 2 (EGR2) has been recently described as required for mature AMs in mice; however, its mechanisms of action have not been explored. Here, we identified EGR2 as an epigenomic regulator and likely direct proximal transcriptional activator in AMs using epigenomic approaches (RNA sequencing, ATAC sequencing, and CUT&RUN). The predicted direct proximal targets of EGR2 included a subset of AM identity genes and ones related to pathogen recognition, phagosome maturation, and adhesion, such as Clec7a, Atp6v0d2, Itgb2, Rhoc, and Tmsb10. We provided evidence that EGR2 deficiency led to impaired zymosan internalization and reduced the capacity to respond to Aspergillus fumigatus. Mechanistically, the lack of EGR2 altered the transcriptional response, secreted cytokines (i.e., CXCL11), and inflammation-resolving lipid mediators (i.e., RvE1) of AMs during in vivo zymosan-induced inflammation, which manifested in impaired resolution. Our findings demonstrated that EGR2 is a key proximal transcriptional activator and epigenomic bookmark in AMs responsible for select, distinct components of cell identity and a protective transcriptional and epigenomic program against fungi.


Subject(s)
Aspergillus fumigatus , Early Growth Response Protein 2 , Macrophages, Alveolar , Phagocytosis , Animals , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Early Growth Response Protein 2/genetics , Early Growth Response Protein 2/metabolism , Early Growth Response Protein 2/immunology , Mice , Phagocytosis/immunology , Phagocytosis/genetics , Aspergillus fumigatus/immunology , Mice, Knockout , Mice, Inbred C57BL , Epigenomics , Epigenesis, Genetic/immunology , Zymosan
8.
Cell Death Dis ; 14(3): 217, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977701

ABSTRACT

Atypically expressed transglutaminase 2 (TG2) has been identified as a poor prognostic factor in a variety of cancers. In this study, we evaluated the contribution of TG2 to the prolonged cell survival of differentiated acute promyelocytic leukaemia (APL) cells in response to the standard treatment with combined retinoic acid (ATRA) and arsenic trioxide (ATO). We report that one advantage of ATRA + ATO treatment compared to ATRA alone diminishes the amount of activated and non-activated CD11b/CD18 and CD11c/CD18 cell surface integrin receptors. These changes suppress ATRA-induced TG2 docking on the cytosolic part of CD18 ß2-integrin subunits and reduce cell survival. In addition, TG2 overexpresses and hyperactivates the phosphatidylinositol-3-kinase (PI3K), phospho-AKT S473, and phospho-mTOR S2481 signalling axis. mTORC2 acts as a functional switch between cell survival and death by promoting the full activation of AKT. We show that TG2 presumably triggers the formation of a signalosome platform, hyperactivates downstream mTORC2-AKT signalling, which in turn phosphorylates and inhibits the activity of FOXO3, a key pro-apoptotic transcription factor. In contrast, the absence of TG2 restores basic phospho-mTOR S2481, phospho-AKT S473, PI3K, and PTEN expression and activity, thereby sensitising APL cells to ATO-induced cell death. We conclude, that atypically expressed TG2 may serve as a hub, facilitating signal transduction via signalosome formation by the CD18 subunit with both PI3K hyperactivation and PTEN inactivation through the PI3K-PTEN cycle in ATRA-treated APL cells.


Subject(s)
Arsenicals , Leukemia, Promyelocytic, Acute , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinase , Proto-Oncogene Proteins c-akt/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Arsenic Trioxide , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Tretinoin/pharmacology , TOR Serine-Threonine Kinases , Cell Death , Mechanistic Target of Rapamycin Complex 2 , Integrins , Arsenicals/pharmacology , PTEN Phosphohydrolase/genetics
9.
Biochim Biophys Acta Gene Regul Mech ; 1861(1): 14-28, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29133016

ABSTRACT

MicroRNAs are important components of the post-transcriptional fine-tuning of macrophage gene expression in physiological and pathological conditions. However, the mechanistic underpinnings and the cis-acting genomic factors of how macrophage polarizing signals induce miRNA expression changes are not well characterized. Therefore, we systematically evaluated the transcriptional basis underlying the inflammation-mediated regulation of macrophage microRNome using the combination of different next generation sequencing datasets. We investigated the LPS-induced expression changes at mature miRNA and pri-miRNA levels in mouse macrophages utilizing a small RNA-seq method and publicly available GRO-seq dataset, respectively. Next, we identified an enhancer set associated with LPS-responsive pri-miRNAs based on publicly available H3K4 mono-methylation-specific ChIP-seq and GRO-seq datasets. This enhancer set was further characterized by the combination of publicly available ChIP and ATAC-seq datasets. Finally, direct interactions between the miR-155-coding genomic region and its distal regulatory elements were identified using a 3C-seq approach. Our analysis revealed 15 robustly LPS-regulated miRNAs at the transcriptional level. In addition, we found that these miRNA genes are associated with an inflammation-responsive enhancer network. Based on NFκB-p65 and JunB transcription factor binding, we showed two distinct enhancer subsets associated with LPS-activated miRNAs that possess distinct epigenetic characteristics and LPS-responsiveness. Finally, our 3C-seq analysis revealed the LPS-induced extensive reorganization of the pri-miR-155-associated functional chromatin domain as well as chromatin loop formation between LPS-responsive enhancers and the promoter region. Our genomic approach successfully combines various genome-wide datasets and allows the identification of the putative regulatory elements controlling miRNA expression in classically activated macrophages.


Subject(s)
Gene Regulatory Networks/genetics , Inflammation/genetics , MicroRNAs/genetics , Transcription, Genetic , Animals , Chromatin/drug effects , Chromatin/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , High-Throughput Nucleotide Sequencing , Humans , Inflammation/chemically induced , Inflammation/pathology , Lipopolysaccharides/toxicity , Mice , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factor RelA/genetics
10.
Stem Cell Res ; 13(1): 88-97, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24858493

ABSTRACT

Adipocyte differentiation and function have become the major research targets due to the increasing interest in obesity and related metabolic conditions. Although, late stages of adipogenesis have been extensively studied, the early phases remain poorly understood. Here we present that supplementing ascorbic acid (AsA) to the adipogenic differentiation cocktail enables the robust and efficient differentiation of mouse embryonic stem cells (mESCs) to mature adipocytes. Such ESC-derived adipocytes mimic the gene-expression profile of subcutaneous isolated adipocytes in vivo remarkably well, much closer than 3T3-L1 derived ones. Moreover, the differentiated cells are in a monolayer, allowing a broad range of genome-wide studies in early and late stages of adipocyte differentiation to be performed.


Subject(s)
Adipocytes/cytology , Adipocytes/drug effects , Ascorbic Acid/pharmacology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Adipocytes/metabolism , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cytological Techniques/methods , Embryonic Stem Cells/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL