Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Neuroeng Rehabil ; 20(1): 73, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280649

ABSTRACT

BACKGROUND: In post-stroke rehabilitation, positive use of affected limbs in daily life is important to improve affected upper-limb function. Several studies have quantitatively evaluated the amount of upper-limb activity, but few have measured finger usage. In this study, we used a ring-shaped wearable device to measure upper-limb and finger usage simultaneously in hospitalized patients with hemiplegic stroke and investigated the association between finger usage and general clinical evaluation. METHODS: Twenty patients with hemiplegic stroke in an inpatient hospital participated in this study. All patients wore a ring-shaped wearable device on both hands for 9 h on the day of the intervention, and their finger and upper-limb usage were recorded. For the rehabilitation outcome assessments, the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE), Simple Test for Evaluating Hand Function (STEF), Action Research Arm Test (ARAT), Motor Activity Log-14 (MAL), and Functional Independence Measure Motor (FIM-m) were performed and evaluated on the same day as the intervention. RESULTS: Finger usage of the affected hand was moderately correlated with STEF ([Formula: see text], [Formula: see text]) and STEF ratio ([Formula: see text], [Formula: see text]). The finger-usage ratio was moderately correlated with FMA-UE ([Formula: see text], [Formula: see text]) and ARAT ([Formula: see text], [Formula: see text]), and strongly correlated with STEF ([Formula: see text], [Formula: see text]) and STEF ratio ([Formula: see text], [Formula: see text]). The upper-limb usage of the affected side was moderately correlated with FMA-UE ([Formula: see text], [Formula: see text]), STEF ([Formula: see text], [Formula: see text]) and STEF ratio ([Formula: see text], [Formula: see text]), and strongly correlated with ARAT ([Formula: see text], [Formula: see text]). The upper-limb usage ratio was moderately correlated with ARAT ([Formula: see text], [Formula: see text]) and STEF ([Formula: see text], [Formula: see text]), and strongly correlated with the STEF ratio ([Formula: see text], [Formula: see text]). By contrast, there was no correlation between MAL and any of the measurements. CONCLUSIONS: This measurement technique provided useful information that was not biased by the subjectivity of the patients and therapists.


Subject(s)
Stroke Rehabilitation , Stroke , Wearable Electronic Devices , Humans , Hemiplegia/rehabilitation , Recovery of Function , Upper Extremity , Stroke/complications , Stroke Rehabilitation/methods , Treatment Outcome
2.
Sensors (Basel) ; 23(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005649

ABSTRACT

We aimed to capture the fluctuations in the dynamics of body positions and find the characteristics of them in patients with idiopathic normal pressure hydrocephalus (iNPH) and Parkinson's disease (PD). With the motion-capture application (TDPT-GT) generating 30 Hz coordinates at 27 points on the body, walking in a circle 1 m in diameter was recorded for 23 of iNPH, 23 of PD, and 92 controls. For 128 frames of calculated distances from the navel to the other points, after the Fourier transforms, the slopes (the representatives of fractality) were obtained from the graph plotting the power spectral density against the frequency in log-log coordinates. Differences in the average slopes were tested by one-way ANOVA and multiple comparisons between every two groups. A decrease in the absolute slope value indicates a departure from the 1/f noise characteristic observed in healthy variations. Significant differences in the patient groups and controls were found in all body positions, where patients always showed smaller absolute values. Our system could measure the whole body's movement and temporal variations during walking. The impaired fluctuations of body movement in the upper and lower body may contribute to gait and balance disorders in patients.


Subject(s)
Hydrocephalus, Normal Pressure , Parkinson Disease , Humans , Motion Capture , Smartphone , Walking , Gait
3.
Sensors (Basel) ; 23(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37448065

ABSTRACT

Distinguishing pathological gait is challenging in neurology because of the difficulty of capturing total body movement and its analysis. We aimed to obtain a convenient recording with an iPhone and establish an algorithm based on deep learning. From May 2021 to November 2022 at Yamagata University Hospital, Shiga University, and Takahata Town, patients with idiopathic normal pressure hydrocephalus (n = 48), Parkinson's disease (n = 21), and other neuromuscular diseases (n = 45) comprised the pathological gait group (n = 114), and the control group consisted of 160 healthy volunteers. iPhone application TDPT-GT captured the subjects walking in a circular path of about 1 meter in diameter, a markerless motion capture system, with an iPhone camera, which generated the three-axis 30 frames per second (fps) relative coordinates of 27 body points. A light gradient boosting machine (Light GBM) with stratified k-fold cross-validation (k = 5) was applied for gait collection for about 1 min per person. The median ability model tested 200 frames of each person's data for its distinction capability, which resulted in the area under a curve of 0.719. The pathological gait captured by the iPhone could be distinguished by artificial intelligence.


Subject(s)
Artificial Intelligence , Motion Capture , Humans , Gait , Walking , Algorithms , Biomechanical Phenomena , Motion
4.
Sensors (Basel) ; 23(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36679412

ABSTRACT

To assess pathological gaits quantitatively, three-dimensional coordinates estimated with a deep learning model were converted into body axis plane projections. First, 15 healthy volunteers performed four gait patterns; that is, normal, shuffling, short-stepped, and wide-based gaits, with the Three-Dimensional Pose Tracker for Gait Test (TDPT-GT) application. Second, gaits of 47 patients with idiopathic normal pressure hydrocephalus (iNPH) and 92 healthy elderly individuals in the Takahata cohort were assessed with the TDPT-GT. Two-dimensional relative coordinates were calculated from the three-dimensional coordinates by projecting the sagittal, coronal, and axial planes. Indices of the two-dimensional relative coordinates associated with a pathological gait were comprehensively explored. The candidate indices for the shuffling gait were the angle range of the hip joint < 30° and relative vertical amplitude of the heel < 0.1 on the sagittal projection plane. For the short-stepped gait, the angle range of the knee joint < 45° on the sagittal projection plane was a candidate index. The candidate index for the wide-based gait was the leg outward shift > 0.1 on the axial projection plane. In conclusion, the two-dimensional coordinates on the body axis projection planes calculated from the 3D relative coordinates estimated by the TDPT-GT application enabled the quantification of pathological gait features.


Subject(s)
Deep Learning , Mobile Applications , Humans , Aged , Gait , Knee Joint , Hip Joint , Biomechanical Phenomena
5.
Sensors (Basel) ; 22(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35890959

ABSTRACT

To quantitatively assess pathological gait, we developed a novel smartphone application for full-body human motion tracking in real time from markerless video-based images using a smartphone monocular camera and deep learning. As training data for deep learning, the original three-dimensional (3D) dataset comprising more than 1 million captured images from the 3D motion of 90 humanoid characters and the two-dimensional dataset of COCO 2017 were prepared. The 3D heatmap offset data consisting of 28 × 28 × 28 blocks with three red-green-blue colors at the 24 key points of the entire body motion were learned using the convolutional neural network, modified ResNet34. At each key point, the hottest spot deviating from the center of the cell was learned using the tanh function. Our new iOS application could detect the relative tri-axial coordinates of the 24 whole-body key points centered on the navel in real time without any markers for motion capture. By using the relative coordinates, the 3D angles of the neck, lumbar, bilateral hip, knee, and ankle joints were estimated. Any human motion could be quantitatively and easily assessed using a new smartphone application named Three-Dimensional Pose Tracker for Gait Test (TDPT-GT) without any body markers or multipoint cameras.


Subject(s)
Deep Learning , Biomechanical Phenomena , Gait , Humans , Motion , Smartphone
6.
Sensors (Basel) ; 18(11)2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30356012

ABSTRACT

Many motion sensor-based applications have been developed in recent years because they provide useful information about daily activities and current health status of users. However, most of these applications require knowledge of sensor positions. Therefore, this research focused on the problem of detecting sensor positions. We collected standing-still and walking sensor data at various body positions from ten subjects. The offset values were removed by subtracting the sensor data of standing-still phase from the walking data for each axis of each sensor unit. Our hierarchical classification technique is based on optimizing local classifiers. Many common features are computed, and informative features are selected for specific classifications. In this approach, local classifiers such as arm-side and hand-side discriminations yielded F1-scores of 0.99 and 1.00, correspondingly. Overall, the proposed method achieved an F1-score of 0.81 and 0.84 using accelerometers and gyroscopes, respectively. Furthermore, we also discuss contributive features and parameter tuning in this analysis.


Subject(s)
Biosensing Techniques , Monitoring, Ambulatory/methods , Algorithms , Humans , Postural Balance/physiology , Support Vector Machine , Walking/physiology
7.
J Phys Ther Sci ; 29(2): 228-231, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28265145

ABSTRACT

[Purpose] The purpose of the present study is to clarify whether tilted scenery presented through an immersive head-mounted display (HMD) causes the inclination of standing posture. [Subjects and Methods] Eleven healthy young adult males who provided informed consent participated in the experiment. An immersive HMD and a stereo camera were employed to develop a visual inclination system. The subjects maintained a standing posture twice for 5s each while wearing the visual inclination system. They performed this task under two conditions: normal view and 20° leftward tilted view. A three-dimensional motion analysis system was used to measure the subjects' postures, and two force plates were used to measure the vertical component of the floor reaction force of each leg. [Results] In the 20° leftward tilted view, the head and trunk angles in the frontal plane were similarly inclined toward the left, and the vertical component of the floor reaction force increased in the left leg, whereas it decreased in the right leg. [Conclusion] When the view in the immersive HMD was tilted, the participants' trunk side bent toward the same side as that of the view. This visual inclination system seems to be a simple intervention for changing standing posture.

8.
Neural Plast ; 2016: 6726238, 2016.
Article in English | MEDLINE | ID: mdl-27413556

ABSTRACT

The self-identification, which is called sense of ownership, has been researched through methodology of rubber hand illusion (RHI) because of its simple setup. Although studies with neuroimaging technique, such as fMRI, revealed that several brain areas are associated with the sense of ownership, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we introduced an automated setup to induce RHI, measured the brain activity during the RHI with NIRS, and analyzed the functional connectivity so as to understand dynamical brain relationship regarding the sense of ownership. The connectivity was evaluated by multivariate Granger causality. In this experiment, the peaks of oxy-Hb on right frontal and right motor related areas during the illusion were significantly higher compared with those during the nonillusion. Furthermore, by analyzing the NIRS recordings, we found a reliable connectivity from the frontal to the motor related areas during the illusion. This finding suggests that frontal cortex and motor related areas communicate with each other when the sense of ownership is induced. The result suggests that the sense of ownership is related to neural mechanism underlying human motor control, and it would be determining whether motor learning (i.e., neural plasticity) will occur. Thus RHI with the functional connectivity analysis will become an appropriate biomarker for neurorehabilitation.


Subject(s)
Body Image , Illusions/physiology , Sensation/physiology , Visual Perception/physiology , Adult , Biomarkers/analysis , Female , Humans , Magnetic Resonance Imaging/methods , Male , Ownership , Rubber , Spectroscopy, Near-Infrared , Young Adult
9.
J Neuroeng Rehabil ; 11: 90, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24886610

ABSTRACT

BACKGROUND: Event-related desynchronization/synchronization (ERD/ERS) is a relative power decrease/increase of electroencephalogram (EEG) in a specific frequency band during physical motor execution and mental motor imagery, thus it is widely used for the brain-computer interface (BCI) purpose. However what the ERD really reflects and its frequency band specific role have not been agreed and are under investigation. Understanding the underlying mechanism which causes a significant ERD would be crucial to improve the reliability of the ERD-based BCI. We systematically investigated the relationship between conditions of actual repetitive hand movements and resulting ERD. METHODS: Eleven healthy young participants were asked to close/open their right hand repetitively at three different speeds (Hold, 1/3 Hz, and 1 Hz) and four distinct motor loads (0, 2, 10, and 15 kgf). In each condition, participants repeated 20 experimental trials, each of which consisted of rest (8-10 s), preparation (1 s) and task (6 s) periods. Under the Hold condition, participants were instructed to keep clenching their hand (i.e., isometric contraction) during the task period. Throughout the experiment, EEG signals were recorded from left and right motor areas for offline data analysis. We obtained time courses of EEG power spectrum to discuss the modulation of mu and beta-ERD/ERS due to the task conditions. RESULTS: We confirmed salient mu-ERD (8-13 Hz) and slightly weak beta-ERD (14-30 Hz) on both hemispheres during repetitive hand grasping movements. According to a 3 × 4 ANOVA (speed × motor load), both mu and beta-ERD during the task period were significantly weakened under the Hold condition, whereas no significant difference in the kinetics levels and interaction effect was observed. CONCLUSIONS: This study investigates the effect of changes in kinematics and kinetics on resulting ERD during repetitive hand grasping movements. The experimental results suggest that the strength of ERD may reflect the time differentiation of hand postures in motor planning process or the variation of proprioception resulting from hand movements, rather than the motor command generated in the down stream, which recruits a group of motor neurons.


Subject(s)
Electroencephalography Phase Synchronization/physiology , Evoked Potentials, Motor/physiology , Hand Strength/physiology , Motor Cortex/physiology , Movement/physiology , Biomechanical Phenomena , Brain-Computer Interfaces , Electroencephalography , Female , Hand/physiology , Humans , Imagination/physiology , Kinetics , Male , Young Adult
10.
Sci Rep ; 14(1): 5140, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429357

ABSTRACT

Accomplishing motor function requires multimodal information, such as visual and haptic feedback, which induces a sense of ownership (SoO) over one's own body part. In this study, we developed a visual-haptic human machine interface that combines three different types of feedback (visual, haptic, and kinesthetic) in the context of passive hand-grasping motion and aimed to generate SoO over a virtual hand. We tested two conditions, both conditions the three set of feedback were synchronous, the first condition was in-phase, and the second condition was in antiphase. In both conditions, we utilized passive visual feedback (pre-recorded video of a real hand displayed), haptic feedback (balloon inflated and deflated), and kinesthetic feedback (finger movement following the balloon curvature). To quantify the SoO, the participants' reaction time was measured in response to a sense of threat. We found that most participants had a shorter reaction time under anti-phase condition, indicating that synchronous anti-phase of the multimodal system was better than in-phase condition for inducing a SoO of the virtual hand. We conclude that stronger haptic feedback has a key role in the SoO in accordance with visual information. Because the virtual hand is closing and the high pressure from the balloon against the hand creates the sensation of grasping and closing the hand, it appeared as though the person was closing his/her hand at the perceptual level.


Subject(s)
Haptic Technology , Ownership , Humans , Female , Male , Feedback , Hand , Upper Extremity
11.
PCN Rep ; 3(1): e181, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38868479

ABSTRACT

Background: To date, only a few reports of anti-LGI1 encephalitis with isolated psychiatric symptoms in the initial phase have been reported. We present a relatively rare case of antileucine-rich glioma-inactivated 1 (LGI1) encephalitis that developed only psychiatric symptoms at the onset. Case Presentation: The patient was a male in his 40s who developed anxiety and panic symptoms and was started on antidepressants after being diagnosed with panic disorder by a psychiatrist. He visited our hospital 2 months later presenting with hallucinations, delusions, mild cognitive decline, and faciobrachial dystonic seizures in the left upper extremity and face. Fluid-attenuated inversion recovery magnetic resonance imaging revealed swelling and hyperintensities in the right caudate nucleus and putamen. Cerebrospinal fluid analysis did not show increased protein levels or cell counts and revealed positive oligoclonal bands. Subsequently, positive results for anti-LGI1 antibodies were observed in the cerebrospinal fluid. Therefore, the patient was diagnosed with anti-LGI1 encephalitis. Conclusion: This case highlights the need to consider anti-LGI1 encephalitis therapy in patients with acute-onset psychiatric symptoms.

12.
Intern Med ; 63(15): 2187-2191, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38171876

ABSTRACT

Anti-IgLON5 disease shows various neurological manifestations, of which dysautonomia is one of the major symptoms and is rarely improved by immunotherapy. We herein report a patient with anti-IgLON5 disease who showed several autonomic failures, including vocal cord palsy for four months. The patient presented with cognitive impairments, bulbar symptoms accompanied by myorhythmia in the pharynx and tongue, cerebellar ataxia with tremor, motor neuron symptoms in the limbs, gastrointestinal dysfunction, orthostatic hypotension, non-rapid eye movement sleep disorder on polysomnography, and severe vocal cord palsy. Combined immunotherapy improved his symptoms, including vocal cord palsy, suggesting that combined immunotherapy might improve dysautonomia in anti-IgLON5 disease.


Subject(s)
Immunotherapy , Primary Dysautonomias , Vocal Cord Paralysis , Humans , Male , Primary Dysautonomias/etiology , Vocal Cord Paralysis/therapy , Vocal Cord Paralysis/etiology , Immunotherapy/methods , Cell Adhesion Molecules, Neuronal/immunology , Treatment Outcome , Middle Aged , Autoantibodies/blood , Autoantibodies/immunology
13.
Front Neurorobot ; 15: 760132, 2021.
Article in English | MEDLINE | ID: mdl-34924991

ABSTRACT

When learning a new skill through an unknown environment, should we practice alone, or together with another beginner, or learn from the expert? It is normally helpful to have an expert guiding through unknown environmental dynamics. The guidance from the expert is fundamentally based on mutual interactions. From the perspective of the beginner, one needs to face dual unknown dynamics of the environment and motor coordination of the expert. In a cooperative visuo-haptic motor task, we asked novice participants to bring a virtual mass onto the specified target location under an unknown external force field. The task was completed by an individual or with an expert or another novice. In addition to evaluation of the motor performance, we evaluated the adaptability of the novice participants to a new partner while attempting to achieve a common goal together. The experiment was set in five phases; baseline for skill transfer and adaptability, learning and evaluation for adaptability and skill transfer respectively. The performance of the participants was characterized by using the time to target, effort index, and length of the trajectory. Experimental results suggested that (1) peer-to-peer interactions among paired beginners enhanced the motor learning most, (2) individuals practicing on their own (learning as a single) showed better motor learning than practicing under the expert's guidance, and (3) regarding the adaptability, peer-to-peer interactions induced higher adaptability to a new partner than the novice-to-expert interactions while attempting to achieve a common goal together. Thus, we conclude that the peer-to-peer interactions under a collaborative task can realize the best motor learning of the motor skills through the new environmental dynamics, and adaptability to others in order to achieve a goal together. We suggest that the peer-to-peer learning can induce both adaptability to others and learning of motor skills through the unknown environmental dynamics under mutual interactions. On the other hand, during the peer-to-peer interactions, the novice can learn how to coordinate motion with his/her partner (even though one is a new partner), and thus, is able to learn the motor skills through new environmental dynamics.

14.
Front Hum Neurosci ; 15: 764281, 2021.
Article in English | MEDLINE | ID: mdl-34858156

ABSTRACT

Event-related desynchronization (ERD) is a relative attenuation in the spectral power of an electroencephalogram (EEG) observed over the sensorimotor area during motor execution and motor imagery. It is a well-known EEG feature and is commonly employed in brain-computer interfaces. However, its underlying neural mechanisms are not fully understood, as ERD is a single variable correlated with external events involving numerous pathways, such as motor intention, planning, and execution. In this study, we aimed to identify a dominant factor for inducing ERD. Participants were instructed to grasp their right hand with three different (10, 25, or 40%MVF: maximum voluntary force) levels under two distinct experimental conditions: a closed-loop condition involving real-time visual force feedback (VF) or an open-loop condition in a feedforward (FF) manner. In each condition, participants were instructed to repeat the grasping task a certain number of times with a timeline of Rest (10.0 s), Preparation (1.0 s), and Motor Execution (4.0 s) periods, respectively. EEG signals were recorded simultaneously with the motor task to evaluate the time-course of the event-related spectrum perturbation for each condition and dissect the modulation of EEG power. We performed statistical analysis of mu and beta-ERD under the instructed grasping force levels and the feedback conditions. In the FF condition (i.e., no force feedback), mu and beta-ERD were significantly attenuated in the contralateral motor cortex during the middle of the motor execution period, while ERD in the VF condition was maintained even during keep grasping. Only mu-ERD at the somatosensory cortex tended to be slightly stronger in high load conditions. The results suggest that the extent of ERD reflects neural activity involved in the motor planning process for changing virtual equilibrium point rather than the motor control process for recruiting motor neurons to regulate grasping force.

15.
Front Hum Neurosci ; 15: 677578, 2021.
Article in English | MEDLINE | ID: mdl-34177496

ABSTRACT

The long-term effects of impairment have a negative impact on the quality of life of stroke patients in terms of not using the affected limb even after some recovery (i.e., learned non-use). Immersive virtual reality (IVR) has been introduced as a new approach for the treatment of stroke rehabilitation. We propose an IVR-based therapeutic approach to incorporate positive reinforcement components in motor coordination as opposed to constraint-induced movement therapy (CIMT). This study aimed to investigate the effect of IVR-reinforced physical therapy that incorporates positive reinforcement components in motor coordination. To simulate affected upper limb function loss in patients, a wrist weight was attached to the dominant hand of participant. Participants were asked to choose their right or left hand to reach toward a randomly allocated target. The movement of the virtual image of the upper limb was reinforced by visual feedback to participants, that is, the participants perceived their motor coordination as if their upper limb was moving to a greater degree than what was occurring in everyday life. We found that the use of the simulated affected limb was increased after the visual feedback enhancement intervention, and importantly, the effect was maintained even after gradual withdrawal of the visual amplification. The results suggest that positive reinforcement within the IVR could induce an effect on decision making in hand usage.

16.
PLoS One ; 15(5): e0231767, 2020.
Article in English | MEDLINE | ID: mdl-32459820

ABSTRACT

Human visual-motor coordination is an essential function of movement control, which requires interactions of multiple brain regions. Understanding the cortical-motor coordination is important for improving physical therapy for motor disabilities. However, its underlying transient neural dynamics is still largely unknown. In this study, we applied an eigenvector-based dynamical network analysis method to investigate the functional connectivity calculated from electroencephalography (EEG) signals under visual-motor coordination task and to identify its meta-stable states dynamics. We first tested this signal processing on a simulated network to evaluate it in comparison with other dynamical methods, demonstrating that the eigenvector-based dynamical network analysis was able to correctly extract the dynamical features of the evolving networks. Subsequently, the eigenvector-based analysis was applied to EEG data collected under a visual-motor coordination experiment. In the EEG study with participants, the results of both topological analysis and the eigenvector-based dynamical analysis were able to distinguish different experimental conditions of visual tracking task. With the dynamical analysis, we showed that different visual-motor coordination states can be distinguished by investigating the meta-stable states dynamics of the functional connectivity.


Subject(s)
Electroencephalography/methods , Psychomotor Performance/physiology , Signal Processing, Computer-Assisted , Brain/physiology , Brain Mapping/methods , Female , Humans , Male , Motor Cortex/physiology , Neurons/physiology , Young Adult
17.
Sci Rep ; 10(1): 16342, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004963

ABSTRACT

Understanding the brain is important in the fields of science, medicine, and engineering. A promising approach to better understand the brain is through computing models. These models were adjusted to reproduce data collected from the brain. One of the most commonly used types of data in neuroscience comes from electroencephalography (EEG), which records the tiny voltages generated when neurons in the brain are activated. In this study, we propose a model based on complex networks of weakly connected dynamical systems (Hindmarsh-Rose neurons or Kuramoto oscillators), set to operate in a dynamic regime recognized as Collective Almost Synchronization (CAS). Our model not only successfully reproduces EEG data from both healthy and epileptic EEG signals, but it also predicts EEG features, the Hurst exponent, and the power spectrum. The proposed model is able to forecast EEG signals 5.76 s in the future. The average forecasting error was 9.22%. The random Kuramoto model produced the outstanding result for forecasting seizure EEG with an error of 11.21%.


Subject(s)
Brain/physiology , Electroencephalography/methods , Epilepsy/physiopathology , Models, Neurological , Signal Processing, Computer-Assisted , Computer Simulation , Humans
18.
Front Psychol ; 11: 539957, 2020.
Article in English | MEDLINE | ID: mdl-33192783

ABSTRACT

A sense of agency (SoA) is the experience of subjective awareness regarding the control of one's actions. Humans have a natural tendency to generate prediction models of the environment and adapt their models according to changes in the environment. The SoA is associated with the degree of the adaptation of the prediction models, e.g., insufficient adaptation causes low predictability and lowers the SoA over the environment. Thus, identifying the mechanisms behind the adaptation process of a prediction model related to the SoA is essential for understanding the generative process of the SoA. In the first half of the current study, we constructed a mathematical model in which the SoA represents a likelihood value for a given observation (sensory feedback) in a prediction model of the environment and in which the prediction model is updated according to the likelihood value. From our mathematical model, we theoretically derived a testable hypothesis that the prediction model is updated according to a Bayesian rule or a stochastic gradient. In the second half of our study, we focused on the experimental examination of this hypothesis. In our experiment, human subjects were repeatedly asked to observe a moving square on a computer screen and press a button after a beep sound. The button press resulted in an abrupt jump of the moving square on the screen. Experiencing the various stochastic time intervals between the action execution (button-press) and the consequent event (square jumping) caused gradual changes in the subjects' degree of their SoA. By comparing the above theoretical hypothesis with the experimental results, we concluded that the update (adaptation) rule of the prediction model based on the SoA is better described by a Bayesian update than by a stochastic gradient descent.

19.
Front Neurol ; 11: 179, 2020.
Article in English | MEDLINE | ID: mdl-32218767

ABSTRACT

Current assessment of patients with cerebellar disorders is based on conventional neurological examination that is dependent on subjective judgements. Quantitative measurement of cerebellar ataxias (CAs) is essential for assessment of evidence-based treatments and the monitoring of the progress or recovery of diseases. It may provide us a useful tool to navigate future treatments for ataxia. We developed a Kinect v2. sensor system with a novel algorithm to measure and evaluate movements for two tests of Scale for the Assessment and Rating of Ataxia (SARA): the nose-finger test and gait. For the nose-finger test, we evaluated and compared accuracy, regularities and smoothness in the movements of the index finger and the proximal limbs between cerebellar patients and control subjects. For the task of walking, we evaluated and compared stability between the two groups. The precision of the system for evaluation of movements was smaller than 2 mm. For the nose-finger test, the mildly affected patients tended to show more instability than the control subjects. For a severely affected patient, our system quantified the instability of movements of the index finger using kinematic parameters, such as fluctuations and average speed. The average speed appears to be the most sensitive parameter that contrasts between patients with CAs and control subjects. Furthermore, our system also detected the adventitious movements of more proximal body parts, such as the elbow, shoulder and head. Assessment of walking was possible only in patients with mild CAs. They demonstrated large sways and compensatory wide stances. These parameters appeared to show higher accuracy than SARA. This examiner-independent device measures movements of the points of interest of SARA more accurately than eye and further provides additional information about the ataxic movements (e.g., the adventitious movements of the elbow, shoulder and head in the nose-finger test and the wide-based walking with large oscillation in the gait task), which is out of the scope of SARA. Our new system enables more accurate scoring of SARA and further provides additional information that is not currently evaluated with SARA. Therefore, it provides an easier, more accurate and more systematic description of CAs.

20.
PLoS One ; 14(10): e0223837, 2019.
Article in English | MEDLINE | ID: mdl-31622399

ABSTRACT

In this study, we investigated the underlying mechanisms of a motor system that affects skills and strategies of expert dart throwers. Eight experts participated in our experiment and each subject performed 42 throws. Kinematics of the shoulder, elbow, wrist, and dart were recorded by six high-speed cameras (200 Hz). The vertical error curve over time was calculated based on both hand and dart trajectories to clarify their relationship and interaction, which could attribute to their skills. Moreover, the kinematics of the dart (speed and direction) and angular kinematics of the elbow and wrist at the time of release were investigated to elucidate which parameters constitute the throwing strategies of experts. Experimental results showed that expert's throwing can be classified into two strategies, i.e., reducing timing sensitivity and reducing timing error. These strategies were derived from the spatial and temporal controls of the hand trajectory. Moreover, we confirmed that the speed of the dart and angular acceleration of the wrist joint at the time of release were highly correlated with the time-window for successful release. These results imply that the two strategies are characterized not only by a spatiotemporal relationship between the hand and dart trajectories, but also by relationships with release kinematic parameters of the proximal joint and the dart. Understanding characteristics which lead to strategies of skilled throwers would provide effective training methodology for beginners.


Subject(s)
Hand/physiology , Movement/physiology , Wrist Joint/physiology , Arm/physiology , Biomechanical Phenomena , Female , Fingers/physiology , Humans , Male , Psychomotor Performance
SELECTION OF CITATIONS
SEARCH DETAIL