Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Water Res ; 244: 120459, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37597446

ABSTRACT

This study aims to develop a cost-effective and time-efficient method for detecting nanoplastics, which have recently garnered significant attention due to their potential harmful impact on the water environment (XiaoZhi, 2021; Gigault et al., 2021; Mitrano et al., 2021; Ferreira et al., 2019). Although several techniques are available to accumulate data on microplastics, there is currently no universally accepted analytical technique for detecting nanoplastics (Gigault et al., 2021; Mitrano et al., 2021; Mitrano et al., 2019; Cai et al., 2021a; Allen et al., 2022). In this study, we have developed a substrate that exhibits Surface-enhanced Raman scattering (SERS) (Zhou et al., 2021; Lv et al., 2020; Lê et al., 2021; Hu et al., 2022; Chang et al., 2022; Yang et al., 2022; Xu et al., 2020; Jeon et al., 2021; Lee and Fang, 2022; Vélez-Escamilla and Contreras-Torres, 2022; Liu et al., 2022; Xie et al., 2023) activity over a large area and a dark background in optical (darkfield mode) vision, enabling the detection of sparkling nanoplastics on the substrate. This darkfield-based strategy allows for the point-by-point detection of single nanoplastics, offering cost and time-saving advantages over other resource-intensive analytical techniques. Our findings reveal the presence of PP nanoplastics in commonly used laboratory equipment, individual PE nanoplastics from a hot water-contained commercial paper cup, and the first detection of natural nanoplastics in coastal seawater. We believe that this technique will have a universal application in establishing a global map of nanoplastics and advancing our understanding of the environmental life cycle of plastics.


Subject(s)
Plastics , Water Pollutants, Chemical , Microplastics , Spectrum Analysis, Raman , Water Pollutants, Chemical/analysis , Water
2.
ACS Omega ; 6(49): 33969-33975, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926944

ABSTRACT

Oil spill accidents contaminate the oceanic environment and cause economic distress, and they continue to occur. Many methods have been developed to restore waters contaminated with spilled oil. However, still most commercially available methods are not environmentally or economically sustainable solutions. Therefore, there is a need for the development of sustainable materials with running water treatment capabilities. In recent years, a polyurethane (PU) sponge-based adsorbent has been reported as an oil-water separation and reusable adsorbent. This is because the porous 3D structure of the PU sponge provides a large surface area. However, as the PU sponge has a carboxyl group and an amino group, it exhibits hydrophilicity, so surface modification is essential for oil-water separation. Therefore, to modify the surface of PU to have hydrophobic/oleophilic properties, a hydrophobic/oleophilic adsorbent (HOA) was prepared using graphite and polydimethylsiloxane. On the basis of this, a PU sponge, a porous material, was used to manufacture an adsorbent that can be used in a sustainable and environmentally friendly way. The prepared HOA can selectively adsorb water or oil and can be reused. Furthermore, continuous oil-water separation is possible through a simple flow of fluid. Therefore, it is confirmed that the studied HOA can have great potential for ocean restoration in the future as an adsorbent that mitigates the disadvantages of the currently commercialized method.

SELECTION OF CITATIONS
SEARCH DETAIL