Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Proc Natl Acad Sci U S A ; 116(6): 1974-1983, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30670659

ABSTRACT

Ordered intermetallic nanoparticles are promising electrocatalysts with enhanced activity and durability for the oxygen-reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). The ordered phase is generally identified based on the existence of superlattice ordering peaks in powder X-ray diffraction (PXRD). However, after employing a widely used postsynthesis annealing treatment, we have found that claims of "ordered" catalysts were possibly/likely mixed phases of ordered intermetallics and disordered solid solutions. Here, we employed in situ heating, synchrotron-based, X-ray diffraction to quantitatively investigate the impact of a variety of annealing conditions on the degree of ordering of large ensembles of Pt3Co nanoparticles. Monte Carlo simulations suggest that Pt3Co nanoparticles have a lower order-disorder phase transition (ODPT) temperature relative to the bulk counterpart. Furthermore, we employed microscopic-level in situ heating electron microscopy to directly visualize the morphological changes and the formation of both fully and partially ordered nanoparticles at the atomic scale. In general, a higher degree of ordering leads to more active and durable electrocatalysts. The annealed Pt3Co/C with an optimal degree of ordering exhibited significantly enhanced durability, relative to the disordered counterpart, in practical membrane electrode assembly (MEA) measurements. The results highlight the importance of understanding the annealing process to maximize the degree of ordering in intermetallics to optimize electrocatalytic activity.

2.
J Electrochem Soc ; 161(14): F1323-F1329, 2014.
Article in English | MEDLINE | ID: mdl-26190857

ABSTRACT

We present experimentally observed molecular adsorbate coverages (e.g., O(H), OOH and HOOH) on real operating dealloyed bimetallic PtMx (M = Ni or Co) catalysts under oxygen reduction reaction (ORR) conditions obtained using X-ray absorption near edge spectroscopy (XANES). The results reveal a complex Sabatier catalysis behavior and indicate the active ORR mechanism changes with Pt-O bond weakening from the O2 dissociative mechanism, to the peroxyl mechanism, and finally to the hydrogen peroxide mechanism. An important rearrangement of the OOH binding site, an intermediate in the ORR, enables facile H addition to OOH and faster O-O bond breaking on 111 faces at optimal Pt-O bonding strength, such as that occurring in dealloyed PtM core-shell nanoparticles. This rearrangement is identified by previous DFT calculations and confirmed from in situ measured OOH adsorption coverages during the ORR. The importance of surface structural effects and 111 ordered faces is confirmed by the higher specific ORR rates on solid core vs porous multi-core nanoparticles.

3.
J Am Chem Soc ; 130(12): 4007-15, 2008 Mar 26.
Article in English | MEDLINE | ID: mdl-18311974

ABSTRACT

Different-sized CdSe quantum dots have been assembled on TiO2 films composed of particle and nanotube morphologies using a bifunctional linker molecule. Upon band-gap excitation, CdSe quantum dots inject electrons into TiO2 nanoparticles and nanotubes, thus enabling the generation of photocurrent in a photoelectrochemical solar cell. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via size control of CdSe quantum dots and (ii) improvement in the photoconversion efficiency by facilitating the charge transport through TiO2 nanotube architecture. The maximum IPCE (photon-to-charge carrier generation efficiency) obtained with 3 nm diameter CdSe nanoparticles was 35% for particulate TiO2 and 45% for tubular TiO2 morphology. The maximum IPCE observed at the excitonic band increases with decreasing particle size, whereas the shift in the conduction band to more negative potentials increases the driving force and favors fast electron injection. The maximum power-conversion efficiency

Subject(s)
Cadmium Compounds/chemistry , Nanoparticles/chemistry , Nanotubes/chemistry , Quantum Dots , Selenium Compounds/chemistry , Titanium/chemistry , Electrochemistry , Particle Size , Photochemistry , Surface Properties , Time Factors
4.
J Phys Chem B ; 110(33): 16185-8, 2006 Aug 24.
Article in English | MEDLINE | ID: mdl-16913738

ABSTRACT

Well-dispersed Pt catalysts with very high utilization efficiencies for fuel cell reactions have been prepared by ethylene glycol reduction on polymer-wrapped single-walled carbon nanotubes (SWCNTs). By wrapping the SWCNTs in a polymer such as polystyrene sulfonate, we are able to break up the nanotube bundles to achieve better dispersion. These polymer-wrapped SWCNTs with platinum nanoparticles deposited on them show very high electrochemically active surface areas. The increase in utilization efficiencies for platinum catalysts on these SWCNT supports can be attributed to the increased surface areas and the well-dispersed nature of the carbon support and catalyst. The catalyst dispersion facilitates diffusion of reactant species which in turn results in higher methanol oxidation currents and more positive potentials for oxygen reduction.

5.
J Phys Chem Lett ; 7(7): 1127-37, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26961326

ABSTRACT

Substantial progress has been made in reducing proton-exchange membrane fuel cell (PEMFC) cathode platinum loadings from 0.4-0.8 mgPt/cm(2) to about 0.1 mgPt/cm(2). However, at this level of cathode Pt loading, large performance loss is observed at high-current density (>1 A/cm(2)), preventing a reduction in the overall stack cost. This next developmental step is being limited by the presence of a resistance term exhibited at these lower Pt loadings and apparently due to a phenomenon at or near the catalyst surface. This issue can be addressed through the design of catalysts with high and stable Pt dispersion as well as through development and implementation of ionomers designed to interact with Pt in a way that does not constrain oxygen reduction reaction rates. Extrapolating from progress made in past decades, we are optimistic that the concerted efforts of materials and electrode designers can resolve this issue, thus enabling a large step toward fuel cell vehicles that are affordable for the mass market.

6.
J Phys Chem B ; 109(49): 23190-5, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16375282

ABSTRACT

Atomic monolayer islands of Pt, namely, two-dimensional Pt nanoparticles, on a Au(111) electrode have been studied for the first time, focusing on their electrocatalytic activities for oxygen reduction in acid solutions. The Pt islands' electrodes were prepared using the self-assembled technique of thiols together with the replacement of Pt with a Cu monolayer. The states of adsorbed OH and the catalytic activities of oxygen reduction were sensitive to the Pt island size. As island size decreased, a delay in the reduction of surface oxide was observed. However, negligible influence of adsorbed OH on activity for oxygen reduction was observed. Pt islands of sizes ranging from 5 to 10 nm showed higher specific catalytic activities for oxygen reduction. Specific catalytic activities decreased by a factor of 10 with a decrease in island sizes from 5.5 to 3.1 nm. Size effects observed in Pt monolayer islands were discussed in comparison with three-dimensional nanoparticles, to obtain information concerning the size effects of metal nanoparticles.

7.
J Phys Chem B ; 109(1): 19-23, 2005 Jan 13.
Article in English | MEDLINE | ID: mdl-16850975

ABSTRACT

Organic photovoltaic cells using supramolecular complexes of porphyrin-peptide oligomers (porphyrin-functionalized alpha-polypeptides) with fullerene demonstrate remarkable enhancement in the photoelectrochemical performance as well as broader photoresponse in the visible and near-infrared regions by increasing the number of porphyrin units in alpha-polypeptide structures. A high power conversion efficiency (eta) of 1.3% and a maximum incident photon-to-photocurrent efficiency (IPCE) of 42% were attained using composite clusters of porphyrin-peptide octamer and fullerene. These results clearly show that the formation of a molecular assembly between fullerene and multi-porphyrin arrays with a polypeptide backbone controls the electron transfer efficiency in the supramolecular complex, which is essential for the light-energy conversion.


Subject(s)
Fullerenes , Light , Peptides , Porphyrins , Electrochemistry , Fullerenes/chemistry , Fullerenes/radiation effects , Molecular Structure , Particle Size , Peptides/chemistry , Peptides/radiation effects , Photochemistry , Porphyrins/chemistry , Porphyrins/radiation effects
8.
J Phys Chem C Nanomater Interfaces ; 119(1): 757-765, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-26191117

ABSTRACT

X-ray adsorption near edge structure (XANES) data at the Co or Ni K-edge, analyzed using the Δµ difference procedure, are reported for dealloyed PtCo x and PtNi x catalysts (six different catalysts at different stages of life). All catalysts meet the 2017 DOE beginning of life target Pt mass activity target (>0.44 A mgPt-1), but exhibit varying activities and durabilities. The variance factors include different initial precursors, dealloying in HNO3 vs H2SO4, if a postdealloying thermal annealing step was performed, and different morphologies (some with a multi PtM x core and porous Pt skin, some single core with nonporous skin). Data are obtained at the initial beginning of life (BOL, ~200 voltage cycles) and after 10k and 30k (end of life, EOL) voltage cycles following DOE protocol (0.6-1.0 V vs reversible hydrogen electrode). The Δµ data are used to determine at what potential (Vpen) the Pt skin is penetrated by O. The durability, related to a drop in the electrochemical surface areas (ECSAs) after extensive voltage cycling, directly correlates with the Vpen at BOL. The data indicate that cycling produces a "characteristic" Pt skin robustness (porosity or thickness). When the Pt skin at BOL is "thin" (Vpen < 0.9 V) it grows to a "characteristic" thickness consistent with a Vpen of ≈1.1 V, and if it begins very thick, it thins to the same "characteristic" thickness. Particles dealloyed in H2SO4 appear to have a thicker Pt skin at BOL than those dealloyed in HNO3, and a postdealloying annealing procedure appears to produce a particularly nonporous skin with high Vpen, but not necessarily thicker. Furthermore, the PtM3 catalysts exhibited a fast skin "healing" process whereby the initial porous skin appears to become more nonporous after holding the potential at 0.9 V. This work is believed to be the first in situ XAS study to shed light on the nature of the Pt skin, its thickness, and/or porosity, and how it changes with respect to operating electrochemical conditions.

9.
ACS Nano ; 1(1): 13-21, 2007 Aug.
Article in English | MEDLINE | ID: mdl-19203126

ABSTRACT

The use of single wall carbon nanotubes (SWCNTs) as conduits for transporting electrons in a photoelectrochemical solar cell and electronic devices requires better understanding of their electron-accepting properties. When in contact with photoirradiated TiO(2) nanoparticles, SWCNTs accept and store electrons. The Fermi level equilibration with photoirradiated TiO(2) particles indicates storage of up to 1 electron per 32 carbon atoms in the SWCNT. The stored electrons are readily discharged on demand upon addition of electron acceptors such as thiazine and oxazine dyes (reduction potential less negative than that of the SWCNT conduction band) to the TiO(2)-SWCNT suspension. The stepwise electron transfer from photoirradiated TiO(2) nanoparticles --> SWCNT --> redox couple has enabled us to probe the electron equilibration process and determine the apparent Fermi level of the TiO(2)-SWCNT system. A positive shift in apparent Fermi level (20-30 mV) indicates the ability of SWCNTs to undergo charge equilibration with photoirradiated TiO(2) particles. The dependence of discharge capacity on the reduction potential of the dye redox couple is compared for TiO(2) and TiO(2)-SWCNT systems under equilibration conditions.


Subject(s)
Electrons , Nanotubes, Carbon/chemistry , Semiconductors , Absorption , Coloring Agents/chemistry , Electrochemistry , Electron Transport/radiation effects , Nanocomposites/chemistry , Suspensions , Titanium/chemistry , Ultraviolet Rays
10.
Nano Lett ; 7(3): 676-80, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17309316

ABSTRACT

Single wall carbon nanotube (SWCNT) architecture when employed as conducting scaffolds in a TiO2 semiconductor based photoelectrochemical cell can boost the photoconversion efficiency by a factor of 2. Titanium dioxide nanoparticles were dispersed on SWCNT films to improve photoinduced charge separation and transport of carriers to the collecting electrode surface. The shift of approximately 100 mV in apparent Fermi level of the SWCNT-TiO2 system as compared to the unsupported TiO2 system indicates the Fermi level equilibration between the two systems. The interplay between the TiO2 and SWCNT of attaining charge equilibration is an important factor for improving photoelectrochemical performance of nanostructured semiconductor based solar cells. The feasibility of employing a SWCNT-TiO2 composite to drive the water photoelectrolysis reaction has also been explored.

11.
Langmuir ; 22(5): 2392-6, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16489834

ABSTRACT

Significant enhancement in the electrocatalytic activity of Pt particles toward oxygen reduction reaction (ORR) has been achieved by depositing them on a single wall carbon nanotubes (SWCNT) support. Compared to a commercial Pt/carbon black catalyst, Pt/SWCNT films cast on a rotating disk electrode exhibit a lower onset potential and a higher electron-transfer rate constant for oxygen reduction. Improved stability of the SWCNT support is also confirmed from the minimal change in the oxygen reduction current during repeated cycling over a period of 36 h. These studies open up ways to utilize SWCNT/Pt electrocatalyst as a cathode in the proton-exchange-membrane-based hydrogen and methanol fuel cells.

SELECTION OF CITATIONS
SEARCH DETAIL