Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Med Virol ; 95(2): e28456, 2023 02.
Article in English | MEDLINE | ID: mdl-36602052

ABSTRACT

With the ongoing COVID-19 pandemic, several previous studies from different countries showed that physical activity (PA) decreased during the COVID-19 outbreak. However, few studies have examined the recent tendency of PA in the adolescent population. Thus, we aimed to investigate the long-term trend of PA in Korean youth and the prevalence changes between before and during the COVID-19 pandemic. Data from Korea Youth Risk Behavior Web-Based Survey (KYRBS) was collected for consecutive years between 2009 and 2021. The period was separated into prepandemic (2009-2019), early-pandemic (2020), and mid-pandemic (2021). Self-reported amount of PA was categorized into four groups (insufficient, aerobic, muscle strengthening, and both physical activities) according to World Health Organization (WHO) PA guidelines. A total of 840 488 adolescents aged 12-18 who fully responded to the survey were selected (response rate: 95.2%). The 13-year trends in the proportion of adolescents who reported aerobic and muscle-strengthening activities met or exceeded 2020 WHO exercise guidelines for adolescents plateaued (11.9% from 2009 to 2011, 14.2% from 2018 to 2019, 14.4% from 2020, and 14.0% from 2021); however, the slope decreased during the pandemic (ßdiff , -0.076; 95% confidence interval [CI], -0.123 to -0.029). Proportion of sufficient aerobic exercise among adolescents sharply decreased midst the pandemic (28.0% from 2009 to 2011, 29.4% from 2018 to 2019, and 23.8% from 2020; ßdiff , -0.266; 95% CI, -0.306 to -0.226) but increased again in 2021 (26.0% from mid-COVID 19; 95% CI, 25.4-26.7). Similar patterns were observed in Metabolic Equivalent Task (MET) score (MET-min/week; 804.1 from 2018 to 2019, 720.9 from 2020, and 779.6 from 2021). The mean difference in MET score between pre-COVID and post-COVID was -55.4 MET-min/week (95% CI, -70.5 to -40.3). Through a nationwide representative study, there was no significant difference with regard to the number of Korean adolescents who achieved the PA guidelines (pre and postpandemic); however, the prevalence of recommended levels of PA needs to increase more based on the trend before the COVID-19 outbreak. The findings of this study suggest reinforcement of the importance of public health policies for Korean youths to be more physically active, especially during and after the pandemic.


Subject(s)
COVID-19 , Pandemics , Humans , Adolescent , Cross-Sectional Studies , COVID-19/epidemiology , Exercise/physiology , Republic of Korea/epidemiology
2.
Small ; 18(6): e2106035, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34923744

ABSTRACT

Transition metal dichalcogenide (TMD) nanosheets exfoliated in the liquid phase are of significant interest owing to their potential for scalable and flexible photoelectronic applications. Although various dispersants such as surfactants, oligomers, and polymers are used to obtain highly exfoliated TMD nanosheets, most of them are electrically insulating and need to be removed; otherwise, the photoelectric properties of the TMD nanosheets degrade. Here, inorganic halide perovskite nanocrystals (NCs) of CsPbX3  (X = Cl, Br, or I) are presented as non-destructive dispersants capable of dispersing TMD nanosheets in the liquid phase and enhancing the photodetection properties of the nanosheets, thus eliminating the need to remove the dispersant. MoSe2 nanosheets dispersed in the liquid phase are adsorbed with CsPbCl3  NCs. The CsPbCl3 nanocrystals on MoSe2 efficiently withdraw electrons from the nanosheets, and suppress the dark current of the MoSe2 nanosheets, leading to flexible near-infrared MoSe2  photodetectors with a high ON/OFF photocurrent ratio and detectivity. Moreover, lanthanide ion-doped CsPbCl3  NCs enhance the ON/OFF current ratio to >106 . Meanwhile, the dispersion stability of the MoSe2  nanosheets exfoliated with the perovskite NCs is sufficiently high.

3.
Eur Cell Mater ; 42: 72-89, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34279041

ABSTRACT

Insulin-like growth factor I (IGF-I) is essential for muscle and bone development and a primary mediator of growth hormone (GH) actions. While studies have elucidated the importance of IGF-I specifically in muscle or bone development, few studies to date have evaluated the relationship between muscle and bone modulated by IGF-I in vivo, during post-natal growth. Mice with muscle-specific IGF-I overexpression (mIgf1+/+) were utilised to determine IGF-I- and muscle-mass-dependent effects on craniofacial skeleton development during post-natal growth. mIgf1+/+ mice displayed accelerated craniofacial bone growth when compared to wild-type animals. Virus-mediated expression of IGF-I targeting the masseter was performed to determine if post-natal modulation of IGF-I altered mandibular structures. Increased IGF-I in the masseter affected the mandibular base plane angle in a lateral manner, increasing the width of the mandible. At the cellular level, increased muscle IGF-I also accelerated cartilage thickness in the mandibular condyle. Importantly, mandibular length changes associated with increased IGF-I were not present in mice with genetic inhibition of muscle IGF-I receptor activity. These results demonstrated that muscle IGF-I could indirectly affect craniofacial growth through IGF-I-dependent increases in muscle hypertrophy. These findings have clinical implications when considering IGF-I as a therapeutic strategy for craniofacial disorders.


Subject(s)
Bone Development , Insulin-Like Growth Factor I/metabolism , Animals , Mandible , Mandibular Condyle , Mice , Muscles
4.
Opt Lett ; 44(19): 4881-4884, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31568466

ABSTRACT

A laser supercontinuum is generated by cross-phase modulation (XPM) driven by an intense terahertz (THz) field in organic crystal OHQ-N2S. In this highly nonlinear medium, the THz electric field induces a time-varying optical phase modulation, which causes a spectacular spectral broadening and shifting of a co-propagating near-infrared laser pulse. The effect is enabled by the large electro-optic coefficient, the low absorption, and the good velocity matching between the laser and the THz pulse over the OHQ-N2S crystal thickness. The XPM occurs when the THz field is aligned along the polar axis of the OHQ-N2S. The results display a promising pathway for ultrafast control of the spectral and temporal properties of laser pulses using THz stimuli.

5.
Environ Sci Technol ; 53(16): 9926-9936, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31319665

ABSTRACT

Reactive chlorine species (RCS) such as HOCl and chlorine radical species is a strong oxidant and has been widely used for water disinfection. This study investigated a photoelectrochemical (PEC) method of RCS production from ubiquitous chloride ions using a WO3 film electrode and visible light. The degradation of organic substrates coupled with H2 evolution using a WO3 electrode was compared among electrochemical (EC), photocatalytic (PC), and PEC conditions (potential bias: +0.5 V vs Ag/AgCl; λ > 420 nm). The degradation of 4-chlorophenol, bisphenol A, acetaminophen, carbamazepine, humic acid, and fulvic acid and the inactivation of E. coli were remarkably enhanced by in situ RCS generated in PEC conditions, whereas the activities of the PC and EC processes were negligible. The activities of the WO3 film were limited by rapid charge recombination in the PC condition, and the potential bias of +0.5 V did not induce any significant reactions in the EC condition. The PEC activities of WO3 were limited in the absence of Cl- but significantly enhanced in the presence of Cl-, which confirmed the essential role of RCS in this PEC system. The PEC mineralization of organic compounds was also markedly enhanced in the presence of Cl- where dark chemical chlorination by NaOCl addition induced a negligible mineralization. The H2 generation was observed only at the PEC condition and was negligible at PC and EC conditions. On the other hand, the oxidation of chloride on a WO3 photoanode produced chlorate (ClO3-) as a toxic byproduct under UV irradiation, but the visible light-irradiated PEC system generated no chlorate.


Subject(s)
Escherichia coli , Light , Electrodes , Oxidation-Reduction , Oxidative Stress
6.
Int J Mol Sci ; 20(22)2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31726692

ABSTRACT

Cell sheet engineering has evolved rapidly in recent years as a new approach for cell-based therapy. Cell sheet harvest technology is important for producing viable, transplantable cell sheets and applying them to tissue engineering. To date, most cell sheet studies use thermo-responsive systems to detach cell sheets. However, other approaches have been reported. This review provides the progress in cell sheet detachment techniques, particularly reactive oxygen species (ROS)-responsive strategies. Therefore, we present a comprehensive introduction to ROS, their application in regenerative medicine, and considerations on how to use ROS in cell detachment. The review also discusses current limitations and challenges for clarifying the mechanism of the ROS-responsive cell sheet detachment.


Subject(s)
Reactive Oxygen Species/metabolism , Tissue Engineering/methods , Animals , Humans
7.
J Neurosci ; 37(16): 4370-4380, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28283562

ABSTRACT

Amotivation is a common phenotype of major depressive disorder and schizophrenia, which are clinically distinct disorders. Effective treatment targets and strategies can be discovered by examining the dopaminergic reward network function underlying amotivation between these disorders. We conducted an fMRI study in healthy human participants and medicated patients with depression and schizophrenia using an effort-based reinforcement task. We examined regional activations related to reward type (positive and negative reinforcement), effort level, and their composite value, as well as resting-state functional connectivities within the meso-striatal-prefrontal pathway. We found that integrated reward and effort values of low effort-positive reinforcement and high effort-negative reinforcement were behaviorally anticipated and represented in the putamen and medial orbitofrontal cortex activities. Patients with schizophrenia and depression did not show anticipation-related and work-related reaction time reductions, respectively. Greater amotivation severity correlated with smaller work-related putamen activity changes according to reward type in schizophrenia and effort level in depression. Patients with schizophrenia showed feedback-related putamen hyperactivity of low effort compared with healthy controls and depressed patients. The strength of medial orbitofrontal-striatal functional connectivity predicted work-related reaction time reduction of high effort negative reinforcement in healthy controls and amotivation severity in both patients with schizophrenia and those with depression. Patients with depression showed deficient medial orbitofrontal-striatal functional connectivity compared with healthy controls and patients with schizophrenia. These results indicate that amotivation in depression and schizophrenia involves different pathophysiology in the prefrontal-striatal circuitry.SIGNIFICANCE STATEMENT Amotivation is present in both depression and schizophrenia. However, treatment involves the use of drugs that enhance serotonin activity in depression and inhibit serotonin and dopamine activity in schizophrenia. Understanding how motivation processed in the mesocorticolimbic and nigostriatal pathways is affected in depression and schizophrenia is important in discovering treatment targets and strategies for amotivation. To our knowledge, this is the first study to compare patients with depression and schizophrenia in a common functional construct. By using an effort-based reinforcement task and examining resting-state functional connectivity in the dopaminergic network, we propose that difference in striato-orbitofrontal dysfunction in effort-based reinforcement between depression and schizophrenia may be related to differences in the extent of functional dysconnectivity in the dopaminergic pathway.


Subject(s)
Connectome , Depression/physiopathology , Motivation , Reward , Schizophrenia/physiopathology , Adult , Apathy , Case-Control Studies , Corpus Striatum/physiology , Corpus Striatum/physiopathology , Depression/drug therapy , Feedback, Physiological , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prefrontal Cortex/physiology , Prefrontal Cortex/physiopathology , Putamen/physiology , Putamen/physiopathology , Reaction Time , Schizophrenia/drug therapy
10.
Photochem Photobiol Sci ; 17(6): 763-772, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29717739

ABSTRACT

Systemic injection of a photosensitizer is a general method in photodynamic therapy, but it has complications due to the unintended systemic distribution and remnants of photosensitizers. This study focused on the possibility of suppressing luminal proliferative cells by excessive reactive oxygen species from locally delivered photosensitizer with biocompatible polyurethane, instead of the systemic injection method. We used human bladder cancer cells, hematoporphyrin as the photosensitizer, and polyurethane film as the photosensitizer-delivering container. The light source was a self-made LED (510 nm, 5 mW cm-2) system. The cancer cells were cultured on different doses of hematoporphyrin-containing polyurethane film and irradiated with LED for 15 minutes and 30 minutes each. After irradiating with LED and incubating for 24 hours, cell viability analysis, cell cycle analysis, apoptosis assay, intracellular and extracellular ROS generation study and western blot were performed. The cancer cell suppression effects of different concentrations of the locally delivered hematoporphyrin with PDT were compared. Apoptosis dominant cancer cell suppressions were shown to be hematoporphyrin dose-dependent. However, after irradiation, intracellular ROS amounts were similar in all the groups having different doses of hematoporphyrin, but these values were definitely higher than those in the control group. Excessive extracellular ROS from the intended, locally delivered photosensitizer for photodynamic treatment application had an inhibitory effect on luminal proliferative cancer cells. This method can be another possibility for PDT application on contactable or attachable lesions.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Delivery Systems , Hematoporphyrins/pharmacology , Photosensitizing Agents/pharmacology , Polyurethanes/pharmacology , Reactive Oxygen Species/metabolism , Urinary Bladder Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hematoporphyrins/chemistry , Humans , Photochemotherapy , Photosensitizing Agents/chemistry , Polyurethanes/chemistry , Reactive Oxygen Species/analysis , Structure-Activity Relationship , Tumor Cells, Cultured , Ultraviolet Rays , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
11.
Adv Exp Med Biol ; 1064: 93-107, 2018.
Article in English | MEDLINE | ID: mdl-30471028

ABSTRACT

In recent tissue engineering applications, the advance of biomaterials has focused on the devising of biomimetic materials that are directing new tissue formation and capable of causing specific cellular responses. These advances can be controlled by modifying the devising parameters of the materials. The biomimetic materials potentially mimic many roles of ECM in tissues. For the homogeneous distribution and biocompatibility of scaffolds by cell migration with biomimetic materials, cell migration is studied because it has a important role in physiological phenomenon and in pathologies; cancer metastasis, immune response or embryonic development. This review discusses the migration of cells with biomimetic materials for tissue engineering. It is also summarized that the recent advances of cell migration with biomimetic materials in 2-D and 3-D for tissue engineering.


Subject(s)
Biomimetic Materials , Cell Movement , Extracellular Matrix , Tissue Engineering , Biocompatible Materials , Humans , Tissue Scaffolds
12.
Environ Sci Technol ; 51(11): 6590-6598, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28445067

ABSTRACT

Vertically aligned TiO2 nanotube arrays (TNTs) were prepared by electrochemical anodization, and then cathodically polarized with dark blue coloration for the dual-functional photoelectrochemical water treatment of organic substrates degradation and accompanying H2 generation. The resulting Blue-TNTs (inner diameter: ∼40 nm; length: ∼9 µm) showed negligible shift in X-ray diffraction pattern compared with the intact TNTs, but the X-ray photoelectron spectra indicated a partial reduction of Ti4+ to Ti3+ on the surface. The electrochemical analyses of Blue-TNTs revealed a marked enhancement in donor density and electrical conductivity by orders of magnitude. Degradations of test organic substrates on Blue-TNTs were compared with the intact TNTs in electrochemical (EC), photocatalytic (PC), and photoelectrochemical (PEC) conditions (potential bias: 1.64 VNHE; λ > 320 nm). The degradation of 4-chlorophenol was greatly enhanced on Blue-TNTs particularly in PEC condition, whereas the PC activities of the Blue- and intact TNTs were similar. The potential bias of 1.64 VNHE did not induce any noticeable activity in EC condition. Similar trends were observed for the degradation of humic acid and fulvic acid, where main working oxidants were found to be the surface hydroxyl radical as confirmed by hydroxyl radical probe and scavenger tests. H2 generation coupled with the organic degradation was observed only in PEC condition, where the H2 generation rate with Blue-TNTs was more than doubled from that of intact TNTs. Such superior PEC activity was not observed when a common TiO2 nanoparticle film was used as a photoanode. The enhanced electric conductivity of Blue-TNTs coupled with a proper band bending in PEC configuration seemed to induce a highly synergic enhancement.


Subject(s)
Hydrogen , Nanotubes , Titanium , Chlorophenols
13.
Environ Sci Technol ; 51(7): 3973-3981, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28277657

ABSTRACT

We investigated a sequential photocatalysis-dark reaction, wherein organic pollutants were degraded on Ag/TiO2 under UV irradiation and the dark reduction of hexavalent chromium (Cr(VI)) was subsequently followed. The photocatalytic oxidation of 4-chlorophenol (4-CP), a test organic substrate, induced the generation of degradation intermediates and the storage of electrons in Ag/TiO2 which were then utilized for reducing Cr(VI) in the postirradiation period. The dark reduction efficiency of Cr(VI) was much higher with Ag/TiO2 (87%), compared with bare TiO2 (27%) and Pt/TiO2 (22%). The Cr(VI) removal by Ag/TiO2 (87%) was contributed by adsorption (31%), chemical reduction by intermediates of 4-CP degradation (26%), and reduction by electrons stored in Ag (30%). When formic acid, humic acid or ethanol was used as an alternative organic substrate, the electron storage effect was also observed. The postirradiation removal of Cr(VI) on Ag/TiO2 continued for hours, which is consistent with the observation that a residual potential persisted on the Ag/TiO2 electrode in the dark whereas little residual potential was observed on bare TiO2 and Pt/TiO2 electrodes. The stored electrons in Ag/TiO2 and their transfer to Cr(VI) were also indicated by the UV-visible absorption spectral change. Moreover, the electrons stored in the preirradiated Ag/TiO2 reacted with O2 with showing a sign of low-level OH radical generation in the dark period.


Subject(s)
Environmental Pollutants , Adsorption , Catalysis , Chromium , Environmental Pollutants/chemistry , Environmental Pollutants/radiation effects , Humic Substances , Oxidation-Reduction , Titanium , Ultraviolet Rays
14.
Biochem Biophys Res Commun ; 471(3): 335-41, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26869515

ABSTRACT

The interplay between bone-forming osteoblasts and bone-resorbing osteoclasts is essential for balanced bone remodeling. In this study, we evaluate the ability of ethyl-2, 5-dihyrdoxybenzoate (E-2, 5-DHB) to affect both osteoblast and osteoclast differentiation for bone regeneration. Osteogenic differentiation of human mesenchymal stem cells (hMSCs) was quantified by measuring alkaline phosphatase (ALP) activity and calcium deposition. To evaluate osteoclast differentiation, we investigated the effect of E-2, 5-DHB on RANKL-activated osteoclastogenesis in RAW 264.7 cells. E-2, 5-DHB enhanced ALP activity and inhibited RAW 264.7 cell osteoclastogenesis in vitro. To assess the in vivo activity of E-2, 5-DHB, hMSCs were delivered subcutaneosuly alone or in combination with E-2, 5-DHB in an alginate gel into the backs of nude-mice. Histological and immunohistochemical evaluation showed significantly higher calcium deposition in the E-2, 5-DHB group. Osteocalcin (OCN) was highly expressed in cells implanted in the gels containing E-2, 5-DHB. Our results suggest that E-2, 5-DHB can effectively enhance osteoblast differentiation and inhibit osteoclast differentiation both in vitro and in vivo. Understanding the dual function of E-2, 5-DHB on osteoblast and osteoclast differentiation will aid in future development of E-2, 5-DHB as a material for bone tissue engineering.


Subject(s)
Hydroxybenzoates/administration & dosage , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteoclasts/cytology , Osteogenesis/physiology , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Dose-Response Relationship, Drug , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred BALB C , Mice, Nude , Osteoblasts/drug effects , Osteoblasts/physiology , Osteoclasts/drug effects , Osteoclasts/physiology , Osteogenesis/drug effects , RAW 264.7 Cells
15.
J Nanosci Nanotechnol ; 16(3): 3054-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27455759

ABSTRACT

The electrochemical performance of glucose/oxygen biofuel cells based on carbon nanostructures was investigated in the present study. Different types of carbon nanomaterials, including multi-walled carbon nanotubes (MWCNT), functionalized MWCNT (f-MWCNT), carbon nanofibers (CNF), and functionalized CNF (f-CNF) were examined for electrode fabrications. The anode for glucose/oxygen biofuel cells were prepared by sequential coating of carbon nanomaterials, charge transfer complex (CTC), glucose oxidase (GOx) and nafion membrane. The anode was then integrated with a bilirubin oxidase-immobilized cathode for the biofuel cell test. It was found that the electrochemical performance of the enzyme electrodes was remarkably enhanced by the amalgamation of carbon nanomaterials with the CTC. The biofuel cell with anode comprising of f-CNF and the cathode with MWCNT exhibited the best electrochemical performance with a maximum power density of 210 µW/cm2 at a cell voltage of 0.44 V for 20 mM glucose concentration, which is comparable with the best power density value reported earlier.


Subject(s)
Bioelectric Energy Sources , Carbon/chemistry , Glucose/chemistry , Nanostructures , Oxygen/chemistry , Microscopy, Electron, Scanning
16.
Biochem Biophys Res Commun ; 463(1-2): 137-42, 2015.
Article in English | MEDLINE | ID: mdl-26002463

ABSTRACT

The infiltration of the cells into the scaffolds is important phenomenon to give them good biocompatibility and even biodegradability. Fluid shear stress is one of the candidates for the infiltration of cells into scaffolds. Here we investigated the directional migration of human mesenchymal stem cells and infiltration into PLGA scaffold by fluid shear stress. The human mesenchymal stem cells showed directional migrations following the direction of the flow (8, 16 dyne/cm(2)). In the scaffold models, the fluid shear stress (8 dyne/cm(2)) enhanced the infiltration of cells but did not influence on the infiltration of Poly(lactic-co-glycolic acid) particles.


Subject(s)
Lactic Acid/chemistry , Mesenchymal Stem Cells/physiology , Polyglycolic Acid/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Cell Movement , Cells, Cultured , Humans , Hydrodynamics , Mesenchymal Stem Cells/cytology , Microscopy, Electron, Scanning , Polylactic Acid-Polyglycolic Acid Copolymer , Tissue Engineering/instrumentation
17.
Biochem Biophys Res Commun ; 460(2): 255-60, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25772616

ABSTRACT

Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 µM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 µM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified.


Subject(s)
Cell Movement , Electricity , Golgi Apparatus/physiology , Skin/cytology , Brefeldin A/pharmacology , Fibroblasts/cytology , Humans , Infant, Newborn , Microscopy, Fluorescence
18.
Environ Sci Technol ; 49(6): 3506-13, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25695481

ABSTRACT

The oxidation of As(III) (arsenite) to As(V) (arsenate), a critical pretreatment process for total arsenic removal, is easily achieved using chemical oxidation methods. Hydrogen peroxide (H2O2) is widely used as an environmentally benign oxidant but its practical use for the arsenite oxidation is limited by the strong pH dependence and slow oxidation kinetics. This study demonstrated that H2O2-induced oxidation of As(III) can be markedly enhanced in the presence of nonferrous metal oxides (e.g., WO3, TiO2, ZrO2) as a heterogeneous catalyst working over a wide pH range in ambient reaction conditions. In particular, TiO2 is an ideal catalyst because it is not only active and stable but also easily available and inexpensive. Although the photocatalytic oxidation of As(III) on TiO2 was intensively studied, the thermal catalytic activities of TiO2 and other nonferrous metal oxides for the arsenic oxidation have been little investigated. The heterogeneous oxidation rate increased with increasing the TiO2 surface area and [H2O2] and weakly depended on pH whereas the homogeneous oxidation by H2O2 alone was favored only at alkaline condition. The oxidation rate in the TiO2/H2O2 system was not reduced at all in the absence of dioxygen. It was not retarded at all by OH radical scavengers but markedly inhibited by hydroperoxyl radical scavengers. It is proposed that the surface complexation of H2O2 on TiO2 induces the generation of the surface hydroperoxyl radical through an inner-sphere electron transfer, which subsequently reacts with As(III). The catalytic activity of TiO2 was maintained without showing any sign of deactivation. The heterogeneous catalytic oxidation is proposed as a viable method for the preoxidation treatment of As(III)-contaminated water under ambient conditions.


Subject(s)
Arsenites/chemistry , Hydrogen Peroxide/chemistry , Metals/chemistry , Oxides/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Catalysis , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction
19.
Small ; 10(2): 337-43, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-23881835

ABSTRACT

An electrical biosensor exploiting a nanostructured semiconductor is a promising technology for the highly sensitive, label-free detection of biomolecules via a straightforward electronic signal. The facile and scalable production of a nanopatterned electrical silicon biosensor by block copolymer (BCP) nano-lithography is reported. A cost-effective and large-area nanofabrication, based on BCP self-assembly and single-step dry etching, is developed for the hexagonal nanohole patterning of thin silicon films. The resultant nanopatterned electrical channel modified with biotin molecules successfully detects the two proteins, streptavidin and avidin, down to nanoscale molarities (≈1 nm). The nanoscale pattern comparable to the Debye screening length and the large surface area of the three-dimensional silicon nanochannel enable excellent sensitivity and stability. A device simulation confirms that the nanopatterned structure used in this work is effective for biomolecule detection. This approach relying on the scalable self-assembly principle offers a high-throughput manufacturing process for clinical lab-on-a-chip diagnoses and relevant biomolecular studies.


Subject(s)
Biosensing Techniques , Nanostructures , Polymers/chemistry , Silicon/chemistry , Microscopy, Electron, Scanning
20.
J Nanosci Nanotechnol ; 14(5): 3793-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24734637

ABSTRACT

We have fabricated a polymer light-emitting diode (PLED) from the conventional blue-emitting polymer, polyfluorene (PFO), by constructing a multilayer structure with non-metal ion containing water soluble non-conjugated polymer, polyurethane with F- ion (PU:F-), on the top of the PFO. The device with PU:F- layer shows a maximum luminance of 5294 cd/m2 at an applied voltage of 10 V while the one without PU:F- layer shows only 4439 cd/m2 at the same applied voltage. We propose the improvement of device performance with PU:F- layer was due to not only an effective hole blocking at the polymer-polymer interface but also increase of electric field strength with anode after electro-stactic repulsion between electrons from the cathod and anions from the water soluble polymer layer. We will discuss the effect of multilayer polymer structure in PLED in terms of current/voltage characteristics, luminance, and quantum efficiency related with the applied bias.

SELECTION OF CITATIONS
SEARCH DETAIL