Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Bioconjug Chem ; 35(9): 1402-1416, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39185789

ABSTRACT

The Al18F-labeling approach offers a one-step access to radiofluorinated biomolecules by mimicking the labeling process for radiometals. Although these labeling conditions are considered to be mild compared to classic radiofluorinations, improvements of the chelating units have led to the discovery of (±)-H3RESCA, which allows Al18F-labeling already at ambient temperature. While the suitability of (±)-H3RESCA for functionalization and radiofluorination of proteins is well established, its use for small molecules or peptides is less explored. Herein, we advanced this acyclic pentadentate ligand by introducing an alkyne moiety for the late-stage functionalization of biomolecules via click chemistry. We show that in addition to Al18F-labeling, the cyclohexanediamine triazole (CHDT) moiety allows stable complexation of 68Ga and 111In. Three novel CHDT-functionalized PSMA inhibitors were synthesized and their Al18F-, 68Ga-, and 111In-labeled analogs were subjected to a detailed in vitro radiopharmacological characterization. Stability studies in vitro in human serum revealed among others a high kinetic inertness of all radiometal complexes. Furthermore, the Al18F-labeled PSMA ligands were characterized for their biodistribution in a LNCaP derived tumor xenograft mouse model by PET imaging. One radioligand, Al[18F]F-CHDT-PSMA-1, bearing a small azidoacetyl linker at the glutamate-urea-lysine motif, provided an in vivo performance comparable to that of [18F]PSMA-1007 but with even higher tumor-to-blood and tumor-to-muscle ratios at 120 min p.i. Overall, our results highlight the suitability of the novel CHDT moiety for functionalization and radiolabeling of small molecules or peptides with Al18F, 68Ga, and 111In and the triazole ring seems to entail favorable pharmacokinetic properties for molecular imaging purposes.


Subject(s)
Fluorine Radioisotopes , Triazoles , Animals , Triazoles/chemistry , Triazoles/pharmacokinetics , Humans , Mice , Fluorine Radioisotopes/chemistry , Gallium Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Male , Cell Line, Tumor , Click Chemistry , Tissue Distribution
2.
Eur J Nucl Med Mol Imaging ; 51(4): 1085-1096, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37982850

ABSTRACT

Glioma are clinically challenging tumors due to their location and invasiveness nature, which often hinder complete surgical resection. The evaluation of the isocitrate dehydrogenase mutation status has become crucial for effective patient stratification. Through a transdisciplinary approach, we have developed an 18F-labeled ligand for non-invasive assessment of the IDH1R132H variant by using positron emission tomography (PET) imaging. In this study, we have successfully prepared diastereomerically pure [18F]AG-120 by copper-mediated radiofluorination of the stannyl precursor 6 on a TRACERlab FX2 N radiosynthesis module. In vitro internalization studies demonstrated significantly higher uptake of [18F]AG-120 in U251 human high-grade glioma cells with stable overexpression of mutant IDH1 (IDH1R132H) compared to their wild-type IDH1 counterpart (0.4 vs. 0.013% applied dose/µg protein at 120 min). In vivo studies conducted in mice, exhibited the excellent metabolic stability of [18F]AG-120, with parent fractions of 85% and 91% in plasma and brain at 30 min p.i., respectively. Dynamic PET studies with [18F]AG-120 in naïve mice and orthotopic glioma rat model reveal limited blood-brain barrier permeation along with a low uptake in the brain tumor. Interestingly, there was no significant difference in uptake between mutant IDH1R132H and wild-type IDH1 tumors (tumor-to-blood ratio[40-60 min]: ~1.7 vs. ~1.3). In conclusion, our preclinical evaluation demonstrated a target-specific internalization of [18F]AG-120 in vitro, a high metabolic stability in vivo in mice, and a slightly higher accumulation of activity in IDH1R132H-glioma compared to IDH1-glioma. Overall, our findings contribute to advancing the field of molecular imaging and encourage the evaluation of [18F]AG-120 to improve diagnosis and management of glioma and other IDH1R132H-related tumors.


Subject(s)
Brain Neoplasms , Glioma , Glycine/analogs & derivatives , Pyridines , Humans , Mice , Rats , Animals , Isocitrate Dehydrogenase/genetics , Glioma/genetics , Positron-Emission Tomography/methods , Brain Neoplasms/genetics
3.
Eur J Nucl Med Mol Imaging ; 51(6): 1763-1772, 2024 May.
Article in English | MEDLINE | ID: mdl-38200396

ABSTRACT

PURPOSE: [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) has limitations in prostate cancer (PCa) detection owing to low glycolysis in the primary tumour. Recently, prostate-specific membrane antigen (PSMA) PET/CT has been useful for biochemical failure detection and radioligand therapy (RLT) guidance. However, few studies have evaluated its use in primary prostate tumours using PSMA and [18F]FDG PET/CT. This study aimed to evaluate [18F]PSMA-1007 and [18F]FDG PET/CT for primary tumour detection and understand the association of metabolic heterogeneity with clinicopathological characteristics at staging and postoperatively. METHOD: This prospective study included 42 index tumours (27 acinar and 15 ductal-dominant) in 42 patients who underwent [18F]PSMA-1007 and [18F]FDG PET/CT and subsequent radical prostatectomy. All patients were followed for a median of 26 mo, and serum prostate-specific antigen levels were measured every 3 mo to evaluate biochemical failure. One-way analysis of variance, Tukey's multiple comparison test, and Fisher's exact test were performed. RESULTS: All 42 index tumours were detected on [18F]PSMA-1007 PET/CT, whereas only 15 were detected on [18F]FDG PET/CT (62.3% vs. 37.7%, p < 0.0001). A high SUVmax for [18F]PSMA-1007 was observed in tumours with high Gleason scores (GS 6-7 vs. GS 8-10; 12.1 vs. 20.1, p < 0.05). Tumours with [18F]FDG uptake were mostly ductal dominant (acinar-dominant 4/27; ductal-dominant; 11/15, p < 0.001), with lower [18F]PSMA-1007 uptake than tumours without [18F]FDG uptake (SUVmax 16.58 vs. 11.19, p < 0.001). There were 16.6% (7/42) of patients with pStage IV in whom the primary tumours were [18F]FDG positive. Biochemical failure was observed in 14.8% (4/27) of patients with [18F]FDG negative tumours but in 53.3% (8/15) of patients with [18F]FDG positive tumours (p = 0.013). CONCLUSIONS: [18F]PSMA-1007 PET/CT was superior to [18F]FDG PET/CT in detecting primary PCa. In contrast, tumours with [18F]FDG uptake are associated with larger size, a ductal-dominant type, and likely to undergo metastasis at staging and biochemical failure postoperatively.


Subject(s)
Fluorodeoxyglucose F18 , Neoplasm Staging , Niacinamide/analogs & derivatives , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Aged , Middle Aged , Oligopeptides/chemistry , Prospective Studies , Radiopharmaceuticals , Postoperative Period
4.
Eur J Nucl Med Mol Imaging ; 50(5): 1466-1486, 2023 04.
Article in English | MEDLINE | ID: mdl-36604326

ABSTRACT

Here we aim to provide updated guidance and standards for the indication, acquisition, and interpretation of PSMA PET/CT for prostate cancer imaging. Procedures and characteristics are reported for a variety of available PSMA small radioligands. Different scenarios for the clinical use of PSMA-ligand PET/CT are discussed. This document provides clinicians and technicians with the best available evidence, to support the implementation of PSMA PET/CT imaging in research and routine practice.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Gallium Radioisotopes , Oligopeptides , Edetic Acid , Prostatic Neoplasms/diagnostic imaging
5.
Eur J Nucl Med Mol Imaging ; 50(9): 2830-2845, 2023 07.
Article in English | MEDLINE | ID: mdl-37246997

ABSTRACT

Prostate-specific membrane antigen (PSMA) is expressed by the majority of clinically significant prostate adenocarcinomas, and patients with target-positive disease can easily be identified by PSMA PET imaging. Promising results with PSMA-targeted radiopharmaceutical therapy have already been obtained in early-phase studies using various combinations of targeting molecules and radiolabels. Definitive evidence of the safety and efficacy of [177Lu]Lu-PSMA-617 in combination with standard-of-care has been demonstrated in patients with metastatic castration-resistant prostate cancer, whose disease had progressed after or during at least one taxane regimen and at least one novel androgen-axis drug. Preliminary data suggest that 177Lu-PSMA-radioligand therapy (RLT) also has high potential in additional clinical situations. Hence, the radiopharmaceuticals [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T are currently being evaluated in ongoing phase 3 trials. The purpose of this guideline is to assist nuclear medicine personnel, to select patients with highest potential to benefit from 177Lu-PSMA-RLT, to perform the procedure in accordance with current best practice, and to prepare for possible side effects and their clinical management. We also provide expert advice, to identify those clinical situations which may justify the off-label use of [177Lu]Lu-PSMA-617 or other emerging ligands on an individual patient basis.


Subject(s)
Nuclear Medicine , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radiopharmaceuticals/adverse effects , Heterocyclic Compounds, 1-Ring/therapeutic use , Dipeptides/therapeutic use , Lutetium/therapeutic use , Treatment Outcome
6.
Mol Pharm ; 20(2): 1050-1060, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36583623

ABSTRACT

Several radiolabeled prostate-specific membrane antigen (PSMA)-targeted agents have been developed for detecting prostate cancer, using positron emission tomography imaging and targeted radionuclide therapy. Among them, [18F]PSMA-1007 has several advantages, including a comparatively long half-life, delayed renal excretion, and compatible structure with α-/ß-particle emitter-labeled therapeutics. This study aimed to characterize the preclinical pharmacokinetics and internal radiation dosimetry of [18F]PSMA-1007, as well as its repeatability and specificity for target binding using prostate tumor-bearing mice. In PSMA-positive tumor-bearing mice, the kidney showed the greatest accumulation of [18F]PSMA-1007. The distribution in the tumor attained its peak concentration of 2.8%ID/g at 112 min after intravenous injection. The absorbed doses in the tumor and salivary glands were 0.079 ± 0.010 Gy/MBq and 0.036 ± 0.006 Gy/MBq, respectively. The variance of the net influx (Ki) of [18F]PSMA-1007 to the tumor was minimal between scans performed in the same animals (within-subject coefficient of variation = 7.57%). [18F]PSMA-1007 uptake in the tumor was specifically decreased by 32% in Ki after treatment with a PSMA inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In the present study, we investigated the in vivo preclinical characteristics of [18F]PSMA-1007. Our data from [18F]PSMA-1007 PET/computed tomography (CT) studies in a subcutaneous prostate cancer xenograft mouse model supports clinical therapeutic strategies that use paired therapeutic radiopharmaceuticals (such as [177Lu]Lu-PSMA-617), especially strategies with a quantitative radiation dose estimate for target lesions while minimizing radiation-induced toxicity to off-target tissues.


Subject(s)
Prostatic Neoplasms , Radiopharmaceuticals , Male , Humans , Animals , Mice , Radiopharmaceuticals/pharmacokinetics , Heterografts , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/drug therapy , Oligopeptides , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Cell Line, Tumor
7.
Inorg Chem ; 62(50): 20699-20709, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37702665

ABSTRACT

To pursue the design of in vivo stable chelating systems for radiometals, a concise and straightforward method toolbox was developed combining NMR, isothermal titration calorimetry (ITC), and europium time-resolved laser-induced fluorescence spectroscopy (Eu-TRLFS). For this purpose, the macropa chelator was chosen, and Lu3+, La3+, Pb2+, Ra2+, and Ba2+ were chosen as radiopharmaceutically relevant metal ions. They differ in charge (2+ and 3+) and coordination properties (main group vs lanthanides). 1H NMR was used to determine four pKa values (±0.15; carboxylate functions, 2.40 and 3.13; amino functions, 6.80 and 7.73). Eu-TRLFS was used to validate the exclusive existence of the 1:1 Mn+/ligand complex in the chosen pH range at tracer level concentrations. ITC measurements were accomplished to determine the resulting stability constants of the desired complexes, with log K values ranging from 18.5 for the Pb-mcp complex to 7.3 for the Lu-mcp complex. Density-functional-theory-calculated structures nicely mirror the complexes' order of stabilities by bonding features. Radiolabeling with macropa using ligand concentrations from 10-3 to 10-6 M was accomplished by pointing out the complex formation and stability (212Pb > 133La > 131Ba ≈ 224Ra > 177Lu) by means of normal-phase thin-layer chromatography analyses.


Subject(s)
Lanthanoid Series Elements , Radiopharmaceuticals , Ligands , Lead , Thermodynamics , Lanthanoid Series Elements/chemistry , Chelating Agents/chemistry , Europium/chemistry
8.
Inorg Chem ; 62(50): 20754-20768, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37707798

ABSTRACT

Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L3, in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L2, Lu3+ and La3+ show very slow and inefficient complexation with L3 in contrast to L2, and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L3] = 10-4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue.


Subject(s)
Actinoid Series Elements , Lanthanoid Series Elements , Chelating Agents/chemistry , Radiopharmaceuticals/chemistry , Lanthanoid Series Elements/chemistry , Ligands , Lead , Ions/chemistry , Acetates
9.
J Labelled Comp Radiopharm ; 66(3): 116-125, 2023 03.
Article in English | MEDLINE | ID: mdl-36807307

ABSTRACT

[18 F]FTC-146 was introduced as a very potent and selective sigma-1 receptor radioligand, which has shown promising application as an imaging agent for neuropathic pain with positron emission tomography. In line with a multi-laboratory project on animal welfare, we chose this radioligand to investigate its potential for detecting neuropathic pain and tissue damage in tumor-bearing animals. However, the radiochemical yield (RCY) of around 4-7% was not satisfactory to us, and efforts were made to improve it. Herein, we describe an improved approach for the radiosynthesis of [18 F]FTC-146 resulting in a RCY, which is sevenfold higher than that previously reported. A tosylate precursor was synthesized and radio-fluorination experiments were performed via aliphatic nucleophilic substitution reactions using either K[18 F]F-Kryptofix®222 (K2.2.2 )-carbonate system or tetra-n-butylammonium [18 F]fluoride ([18 F]TBAF). Several parameters affecting the radiolabeling reaction such as solvent, 18 F-fluorination agent with the corresponding amount of base, labeling time, and temperature were investigated. Best labeling reaction conditions were found to be [18 F]TBAF and acetonitrile as solvent at 100°C. The new protocol was then translated to an automated procedure using a FX2 N synthesis module. Finally, the radiotracer reproducibly obtained with RCYs of 41.7 ± 4.4% in high radiochemical purity (>98%) and molar activities up to 171 GBq/µmol.


Subject(s)
Positron-Emission Tomography , Receptors, sigma , Animals , Positron-Emission Tomography/methods , Radiopharmaceuticals , Fluorine Radioisotopes , Solvents , Sigma-1 Receptor
10.
J Am Chem Soc ; 144(47): 21555-21567, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36382991

ABSTRACT

We report a nonadentate bispidine (3,7-diazabicyclo[3.3.1]nonane) that unveils the potential to bind theranostically relevant radionuclides, including indium-111, lutetium-177, and actinium-225 under mild labeling conditions. This radiopharmaceutical candidate allows the simultaneous application of imaging and treatment (radionuclide theranostics) without changing the type of the bioconjugate; that is, it allows the strong binding to an imaging and a therapeutic radionuclide by the same chelator. Since sophisticated coordination chemistry is required to achieve high thermodynamic and kinetic stability (inertness), it is not surprising that only a few chelators have been reported that are able to strongly bind several radionuclides to a satisfactory extent. Bispidine-derived ligands have proven to be ideal for di- and trivalent metal ions with generally fast complexation kinetics and high in vitro and in vivo stabilities. The presented (radio)complexes are formed under mild conditions (pH 6, <40 °C) and exhibit thermodynamic stability and inertness in human serum comparable to the corresponding DOTA complexes. The bispidine-based complexing agent was conjugated to a peptide, targeting somatostatin type 2 receptors (SSTR2), overexpressed on neuroendocrine tumors. The 177Lu- and 225Ac-labeled conjugates were investigated, considering their binding to two different SSTR2-positive cell lines, including the human pancreatic carcinoid tumor (BON-SSTR2+) and the murine pheochromocytoma cell line (MPC). The biodistribution and accumulation pattern in MPC tumor-bearing mice was also evaluated. The LuIII and AcIII complexes studied show how ligand structures can be optimized in general by extending the denticity and varying the donor set in order to allow for fast complex formation and medically relevant inertness.


Subject(s)
Chelating Agents , Precision Medicine , Animals , Mice , Humans , Chelating Agents/chemistry , Tissue Distribution , Lutetium/chemistry , Lutetium/therapeutic use , Radioisotopes/chemistry , Radiopharmaceuticals/chemistry
11.
Mol Pharm ; 19(7): 2231-2247, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35467350

ABSTRACT

Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) have both been used in nuclear medicine as targets for molecular imaging and therapy of prostate (PCa) and breast cancer (BCa). Three bioconjugate probes, the PSMA specific: [68Ga]Ga-1, ((HBED-CC)-Ahx-Lys-NH-CO-NH Glu or PSMA-11), the GRPR specific: [68Ga]Ga-2, ((HBED-CC)-4-amino-1-carboxymethyl piperidine-[D-Phe6, Sta13]BN(6-14), a bombesin (BN) analogue), and 3 (the BN analogue: 4-amino-1-carboxymethyl piperidine-[(R)-Phe6, Sta13]BN(6-14) connected with the fluorescent dye, BDP-FL), were synthesized and tested in vitro with PCa and BCa cell lines, more specifically, with PCa cells, PC-3 and LNCaP, with BCa cells, T47D, MDA-MB-231, and with the in-house created PSMA-overexpressing PC-3(PSMA), T47D(PSMA), and MDA-MB-231(PSMA). In addition, biomolecular simulations were conducted on the association of 1 and 2 with PSMA and GRPR. The PSMA overexpression resulted in an increase of cell-bound radioligand [68Ga]Ga-1 (PSMA) for PCa and BCa cells and also of [68Ga]Ga-2 (GRPR), especially in those cell lines already expressing GRPR. The results were confirmed by fluorescence-activated cell sorting with a PE-labeled PSMA-specific antibody and the fluorescence tracer 3. The docking calculations and molecular dynamics simulations showed how 1 enters the PSMA funnel region and how pharmacophore Glu-urea-Lys interacts with the arginine patch, the S1', and S1 subpockets by forming hydrogen and van der Waals bonds. The chelating moiety of 1, that is, HBED-CC, forms additional stabilizing hydrogen bonding and van der Waals interactions in the arene-binding site. Ligand 2 is diving into the GRPR transmembrane (TM) helical cavity, thereby forming hydrogen bonds through its amidated end, water-mediated hydrogen bonds, and π-π interactions. Our results provide valuable information regarding the molecular mechanisms involved in the interactions of 1 and 2 with PSMA and GRPR, which might be useful for the diagnostic imaging and therapy of PCa and BCa.


Subject(s)
Antigens, Surface , Glutamate Carboxypeptidase II , Prostatic Neoplasms , Receptors, Bombesin , Antigens, Surface/metabolism , Bombesin , Breast Neoplasms , Female , Gallium Radioisotopes , Glutamate Carboxypeptidase II/metabolism , Humans , Ligands , Male , Piperidines , Positron-Emission Tomography , Prostatic Neoplasms/metabolism , Receptors, Bombesin/metabolism
12.
J Labelled Comp Radiopharm ; 65(6): 162-166, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35288969

ABSTRACT

[18 F]FLUDA is a selective radiotracer for in vivo imaging of the adenosine A2A receptor (A2A R) by positron emission tomography (PET). Promising preclinical results obtained by neuroimaging of mice and piglets suggest the translation of [18 F]FLUDA to human PET studies. Thus, we report herein a remotely controlled automated radiosynthesis of [18 F]FLUDA using a GE TRACERlab FX2 N radiosynthesizer. The radiotracer was obtained by a one-pot two-step radiofluorination procedure with a radiochemical yield of 9±1%, a radiochemical purity of ≥99%, and molar activities in the range of 69-333 GBq/µmol at the end of synthesis within a total synthesis time of approx. 95 min (n = 16). Altogether, we successfully established a reliable and reproducible procedure for the automated production of [18 F]FLUDA.


Subject(s)
Adenosine , Receptor, Adenosine A2A , Animals , Fluorine Radioisotopes , Positron-Emission Tomography/methods , Radiochemistry/methods , Radiopharmaceuticals , Swine
13.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162950

ABSTRACT

A2A adenosine receptors (A2A-AR) have a cardio-protective function upon ischemia and reperfusion, but on the other hand, their stimulation could lead to arrhythmias. Our aim was to investigate the potential use of the PET radiotracer [18F]FLUDA to non-invasively determine the A2A-AR availability for diagnosis of the A2AR status. Therefore, we compared mice with cardiomyocyte-specific overexpression of the human A2A-AR (A2A-AR TG) with the respective wild type (WT). We determined: (1) the functional impact of the selective A2AR ligand FLUDA on the contractile function of atrial mouse samples, (2) the binding parameters (Bmax and KD) of [18F]FLUDA on mouse and human atrial tissue samples by autoradiographic studies, and (3) investigated the in vivo uptake of the radiotracer by dynamic PET imaging in A2A-AR TG and WT. After A2A-AR stimulation by the A2A-AR agonist CGS 21680 in isolated atrial preparations, antagonistic effects of FLUDA were found in A2A-AR-TG animals but not in WT. Radiolabelled [18F]FLUDA exhibited a KD of 5.9 ± 1.6 nM and a Bmax of 455 ± 78 fmol/mg protein in cardiac samples of A2A-AR TG, whereas in WT, as well as in human atrial preparations, only low specific binding was found. Dynamic PET studies revealed a significantly higher initial uptake of [18F]FLUDA into the myocardium of A2A-AR TG compared to WT. The hA2A-AR-specific binding of [18F]FLUDA in vivo was verified by pre-administration of the highly affine A2AAR-specific antagonist istradefylline. Conclusion: [18F]FLUDA is a promising PET probe for the non-invasive assessment of the A2A-AR as a marker for pathologies linked to an increased A2A-AR density in the heart, as shown in patients with heart failure.


Subject(s)
Heart/diagnostic imaging , Myocardium/metabolism , Positron-Emission Tomography/methods , Receptor, Adenosine A2A/genetics , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Fluorine Radioisotopes/chemistry , Heart/physiology , Humans , Mice , Mice, Transgenic , Phenethylamines/pharmacology , Purines/pharmacology , Receptor, Adenosine A2A/metabolism , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives , Vidarabine/chemistry
14.
Molecules ; 27(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35744895

ABSTRACT

Isocitrate dehydrogenases (IDHs) are metabolic enzymes commonly mutated in human cancers (glioma, acute myeloid leukaemia, chondrosarcoma, and intrahepatic cholangiocarcinoma). These mutated variants of IDH (mIDH) acquire a neomorphic activity, namely, conversion of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate involved in tumourigenesis. Thus, mIDHs have emerged as highly promising therapeutic targets, and several mIDH specific inhibitors have been developed. However, the evaluation of mIDH status, currently performed by biopsy, is essential for patient stratification and thus treatment and follow-up. We report herein the development of new radioiodinated and radiofluorinated analogues of olutasidenib (FT-2102) as tools for noninvasive single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging of mIDH1 up- and dysregulation in tumours. Nonradiolabelled derivatives 2 and 3 halogenated at position 6 of the quinolinone scaffold were synthesised and tested in vitro for their inhibitory potencies and selectivities in comparison with the lead compound FT-2102. Using a common organotin precursor, (S)-[125I]2 and (S)-[18F]3 were efficiently synthesised by radio-iododemetallation and copper-mediated radiofluorination, respectively. Both radiotracers were stable at room temperature in saline or DPBS solution and at 37 °C in mouse serum, allowing future planning of their in vitro and in vivo evaluations in glioma and chondrosarcoma models.


Subject(s)
Bile Duct Neoplasms , Bone Neoplasms , Chondrosarcoma , Glioma , Leukemia, Myeloid, Acute , Animals , Bile Ducts, Intrahepatic , Chondrosarcoma/diagnostic imaging , Chondrosarcoma/genetics , Glioma/diagnostic imaging , Glioma/genetics , Humans , Mice , Mutation , Positron-Emission Tomography , Pyridines , Quinolines , Tomography, Emission-Computed, Single-Photon
15.
Org Biomol Chem ; 19(8): 1722-1726, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33527964

ABSTRACT

In radiopharmaceutical syntheses, maleimide is commonly used for linking thiol-bearing bioactive molecules to metal-complexing ligands (chelators). However, due to instability of the resulting linkage, phenyloxadiazolyl methylsulfone (PODS) was developed as an alternative to maleimide. This coupling strategy has never been attempted with HBED which is a powerful chelator for gallium-radiolabeling especially at ambient temperature. Here we present HBED-CC-PODS as a bifunctional chelator scaffold for the site-selective conjugation of thiol-bearing vectors and [68Ga]Ga-radiolabeling.


Subject(s)
Chelating Agents/chemistry , Oxadiazoles/chemistry , Peptides/chemistry , Radiopharmaceuticals/chemistry , Sulfones/chemistry , Chelating Agents/chemical synthesis , Gallium Radioisotopes/chemistry , Isotope Labeling , Oxadiazoles/chemical synthesis , Peptides/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Sulfones/chemical synthesis
16.
Recent Results Cancer Res ; 216: 283-318, 2020.
Article in English | MEDLINE | ID: mdl-32594390

ABSTRACT

Noninvasive molecular imaging of cancer by means of the scintigraphic imaging modalities PET, PET/CT, and PET/MRI represents a powerful diagnostic tool in modern nuclear medicine. Radiotracers labeled with the prominent positron emitter fluorine-18 are routinely used to target and visualize discrete biological structures dysregulated in the progression of cancer. Such tracers are therefore capable of detecting oncological pathologies in vivo at the cellular and subcellular level in a timely manner and are thereby used for early detection of cancer as well as monitoring for treatment response. This chapter describes a variety of important 18F-labeled radiopharmaceuticals that are frequently used in oncological PET imaging. Small-molecule and low-molecular-weight radiotracers for the detection of glucose utilization, amino acid transport, protein synthesis, membrane lipid synthesis, cell proliferation, cell death, hypoxia, estrogen receptor status, prostate-specific membrane antigen (PSMA) expression, and bone mineralization of tumors are introduced. The structural properties, common radiochemical synthesis approaches as well as in vivo metabolism and accumulation mechanisms of the clinically most important 18F-labeled radiotracers are described.


Subject(s)
Fluorine Radioisotopes , Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Humans , Radiopharmaceuticals
17.
Bioorg Chem ; 100: 103855, 2020 07.
Article in English | MEDLINE | ID: mdl-32428743

ABSTRACT

Tyrosine kinase (TK) receptors including epidermal growth factor receptors (EGFRs) are known to be overexpressed in a wide variety of solid tumors associated with poor prognosis. The HBED-CC chelator N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid 1 was coupled via one or both its propionic acid moieties with the quinazoline EGFR-TK inhibiting pharmacophore 4-amino-N-(4-((3-bromophenyl)amino)quinazolin-6-yl)butanamide 3 resulting in either a monomeric 4 or a dimeric 5 species. Ligands 4 and 5 reacted with Ga3+ generating the corresponding complexes Ga4 and Ga5. Both ligands and complexes were characterized with mass spectrometry and NMR spectroscopy and evaluated in vitro with MTT assays in A431 cells, where they showed IC50 values in the range 51.6 to 68.8 µM. Labeling of ligands 4 and 5 with the PET radionuclide 68Ga was quantitative and resulted in tracers [68Ga]Ga4 and [68Ga]Ga5 with radiochemical purities greater than 98%, which were also characterised by comparative RP-HPLC studies with Ga4 and Ga5 respectively. Radiotracers [68Ga]Ga4 and [68Ga]Ga5 were stable (intact tracer over 98%) in the reaction mixture (120 min) and in human serum (30 min). Both tracers were evaluated in vivo with biodistribution experiments in SCID mice bearing A431 tumors presenting tumor uptake of 1.34 for [68Ga]Ga4 and 1.01 %ID/g for [68Ga]Ga5 at 5 min, which was slightly decreased at 60 min p.i. and then remained stable until 120 min p.i. To the best of our knowledge, this is the first report of monomeric and dimeric quinazoline conjugates with the chelator HBED-CC, which can serve as a basis for further development of EGFR-TKI targeting tracers.


Subject(s)
Edetic Acid/analogs & derivatives , ErbB Receptors/analysis , Gallium Radioisotopes/chemistry , Neoplasms/diagnostic imaging , Quinazolines/chemistry , Animals , Cell Line, Tumor , Dimerization , Edetic Acid/chemical synthesis , Edetic Acid/chemistry , Female , Humans , Mice , Mice, SCID , Positron-Emission Tomography , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis
18.
Eur J Nucl Med Mol Imaging ; 46(5): 1081-1091, 2019 May.
Article in English | MEDLINE | ID: mdl-30603987

ABSTRACT

PURPOSE: The aims of this study were to develop a prostate-specific membrane antigen (PSMA) ligand for labelling with different radioisotopes of lead and to obtain an approximation of the dosimetry of a simulated 212Pb-based alpha therapy using its 203Pb imaging analogue. METHODS: Four novel Glu-urea-based ligands containing the chelators p-SCN-Bn-TCMC or DO3AM were synthesized. Affinity and PSMA-specific internalization were studied in C4-2 cells, and biodistribution in C4-2 tumour-bearing mice. The most promising compound, 203Pb-CA012, was transferred to clinical use. Two patients underwent planar scintigraphy scans at 0.4, 4, 18, 28 and 42 h after injection, together with urine and blood sampling. The time-activity curves of source organs were extrapolated from 203Pb to 212Pb and the calculated residence times of 212Pb were forwarded to its unstable daughter nuclides. QDOSE and OLINDA were used for dosimetry calculations. RESULTS: In vitro, all ligands showed low nanomolar binding affinities for PSMA. CA09 and CA012 additionally showed specific ligand-induced internalization of 27.4 ± 2.4 and 15.6 ± 2.1 %ID/106 cells, respectively. The 203Pb-labelled PSMA ligands were stable in serum for 72 h. In vivo, CA012 showed higher specific uptake in tumours than in other organs, and particularly showed rapid kidney clearance from 5.1 ± 2.5%ID/g at 1 h after injection to 0.9 ± 0.1%ID/g at 24 h. In patients, the estimated effective dose from 250-300 MBq of diagnostic 203Pb-CA012 was 6-7 mSv. Assuming instant decay of daughter nuclides, the equivalent doses projected from a therapeutic activity of 100 MBq of 212Pb-CA012 were 0.6 SvRBE5 to the red marrow, 4.3 SvRBE5 to the salivary glands, 4.9 SvRBE5 to the kidneys, 0.7 SvRBE5 to the liver and 0.2 SvRBE5 to other organs; representative tumour lesions averaged 13.2 SvRBE5 (where RBE5 is relative biological effectiveness factor 5). Compared to clinical experience with 213Bi-PSMA-617 and 225Ac-PSMA-617, the projected maximum tolerable dose was about 150 MBq per cycle. CONCLUSION: 212Pb-CA012 is a promising candidate for PSMA-targeted alpha therapy of prostate cancer. The dosimetry estimate for radiopharmaceuticals decaying with the release of unstable daughter nuclides has some inherent limitations, thus clinical translation should be done cautiously.


Subject(s)
Alpha Particles/therapeutic use , Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/metabolism , Lead Radioisotopes/therapeutic use , Animals , Cell Line, Tumor , Humans , Isotope Labeling , Ligands , Mice , Radiometry
20.
Eur J Nucl Med Mol Imaging ; 46(12): 2536-2544, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31440799

ABSTRACT

Prostate-specific membrane antigen (PSMA) is expressed in most prostate cancers and can be identified by PSMA-ligand imaging, which has already become clinically accepted in several countries in- and outside Europe. PSMA-directed radioligand therapy (PSMA-RLT) with Lutetium-177 (177Lu-PSMA) is currently undergoing clinical validation. Retrospective observational data have documented favourable safety and striking clinical responses. Recent results from a prospective clinical trial (phase II) have been published confirming high response rates, low toxicity and reduction of pain in metastatic castration-resistant prostate cancer (mCRPC) patients who had progressed after conventional treatments. Such patients typically survive for periods less than 1.5 years. This has led some facilities to adopt compassionate or unproven use of this therapy, even in the absence of validation within a randomised-controlled trial. As a result, a consistent body of evidence exists to support efficacy and safety data of this treatment. The purpose of this guideline is to assist nuclear medicine specialists to deliver PSMA-RLT as an "unproven intervention in clinical practice", in accordance with the best currently available knowledge.


Subject(s)
Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/metabolism , Lutetium/therapeutic use , Nuclear Medicine , Practice Guidelines as Topic , Radioisotopes/therapeutic use , Documentation , Europe , Humans , Ligands , Lutetium/adverse effects , Male , Prostatic Neoplasms/radiotherapy , Radioisotopes/adverse effects , Radiometry , Safety
SELECTION OF CITATIONS
SEARCH DETAIL