Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 18(6): 694-704, 2017 06.
Article in English | MEDLINE | ID: mdl-28369050

ABSTRACT

The transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCß, NF-κB1 and IKAROS, to initiate B-ALL. STAT5 antagonized the transcription factors NF-κB and IKAROS by opposing regulation of shared target genes. Super-enhancers showed enrichment for STAT5 binding and were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4 and IKAROS. Patients with a high ratio of active STAT5 to NF-κB or IKAROS had more-aggressive disease. Our studies indicate that an imbalance of two opposing transcriptional programs drives B-ALL and suggest that restoring the balance of these pathways might inhibit B-ALL.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , B-Lymphocytes , Gene Expression Regulation, Neoplastic , Ikaros Transcription Factor/genetics , Pre-B Cell Receptors/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , STAT5 Transcription Factor/metabolism , Agammaglobulinaemia Tyrosine Kinase , Animals , Chromatin Immunoprecipitation , Flow Cytometry , Humans , Interferon Regulatory Factors/genetics , Mice , Multiplex Polymerase Chain Reaction , NF-kappa B p50 Subunit/genetics , PAX5 Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Prognosis , Protein Kinase C beta/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction , Survival Rate , Trans-Activators/genetics
2.
Proc Natl Acad Sci U S A ; 120(16): e2220134120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036970

ABSTRACT

Bromo- and extra-terminal domain inhibitors (BETi) have exhibited therapeutic activities in many cancers. However, the mechanisms controlling BETi response and resistance are not well understood. We conducted genome-wide loss-of-function CRISPR screens using BETi-treated KMT2A-rearranged (KMT2A-r) cell lines. We revealed that Speckle-type POZ protein (SPOP) gene (Speckle Type BTB/POZ Protein) deficiency caused significant BETi resistance, which was further validated in cell lines and xenograft models. Proteomics analysis and a kinase-vulnerability CRISPR screen indicated that cells treated with BETi are sensitive to GSK3 perturbation. Pharmaceutical inhibition of GSK3 reversed the BETi-resistance phenotype. Based on this observation, a combination therapy regimen inhibiting both BET and GSK3 was developed to impede KMT2A-r leukemia progression in patient-derived xenografts in vivo. Our results revealed molecular mechanisms underlying BETi resistance and a promising combination treatment regimen of ABBV-744 and CHIR-98014 by utilizing unique ex vivo and in vivo KMT2A-r PDX models.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Leukemia , Humans , Glycogen Synthase Kinase 3/metabolism , Cell Line, Tumor , Leukemia/drug therapy , Leukemia/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/metabolism
3.
J Proteome Res ; 23(7): 2495-2504, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38829961

ABSTRACT

Asparaginase-based therapy is a cornerstone in acute lymphoblastic leukemia (ALL) treatment, capitalizing on the methylation status of the asparagine synthetase (ASNS) gene, which renders ALL cells reliant on extracellular asparagine. Contrastingly, ASNS expression in acute myeloid leukemia (AML) has not been thoroughly investigated, despite studies suggesting that AML with chromosome 7/7q deletions might have reduced ASNS levels. Here, we leverage reverse phase protein arrays to measure ASNS expression in 810 AML patients and assess its impact on outcomes. We find that AML with inv(16) has the lowest overall ASNS expression. While AML with deletion 7/7q had ASNS levels slightly lower than those of AML without deletion 7/7q, this observation was not significant. Low ASNS expression correlated with improved overall survival (46 versus 54 weeks, respectively, p = 0.011), whereas higher ASNS levels were associated with better response to venetoclax-based therapy. Protein correlation analysis demonstrated association between ASNS and proteins involved in methylation and DNA repair. In conclusion, while ASNS expression was not lower in patients with deletion 7/7q as initially predicted, ASNS levels were highly variable across AML patients. Further studies are needed to assess whether patients with low ASNS expression are susceptible to asparaginase-based therapy due to their inability to augment compensatory ASNS expression upon asparagine depletion.


Subject(s)
Aspartate-Ammonia Ligase , Leukemia, Myeloid, Acute , Proteomics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Female , Proteomics/methods , Male , Middle Aged , Adult , Aged , Chromosome Deletion , Protein Array Analysis/methods , Asparaginase/therapeutic use , Asparaginase/genetics , Chromosomes, Human, Pair 7/genetics , Young Adult , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor
4.
Blood ; 139(6): 907-921, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34601571

ABSTRACT

The majority of RUNX1 mutations in acute myeloid leukemia (AML) are missense or deletion-truncation and behave as loss-of-function mutations. Following standard therapy, AML patients expressing mtRUNX1 exhibit inferior clinical outcome than those without mutant RUNX1. Studies presented here demonstrate that as compared with AML cells lacking mtRUNX1, their isogenic counterparts harboring mtRUNX1 display impaired ribosomal biogenesis and differentiation, as well as exhibit reduced levels of wild-type RUNX1, PU.1, and c-Myc. Compared with AML cells with only wild-type RUNX1, AML cells expressing mtRUNX1 were also more sensitive to the protein translation inhibitor homoharringtonine (omacetaxine) and BCL2 inhibitor venetoclax. Homoharringtonine treatment repressed enhancers and their BRD4 occupancy and was associated with reduced levels of c-Myc, c-Myb, MCL1, and Bcl-xL. Consistent with this, cotreatment with omacetaxine and venetoclax or BET inhibitor induced synergistic in vitro lethality in AML expressing mtRUNX1. Compared with each agent alone, cotreatment with omacetaxine and venetoclax or BET inhibitor also displayed improved in vivo anti-AML efficacy, associated with improved survival of immune-depleted mice engrafted with AML cells harboring mtRUNX1. These findings highlight superior efficacy of omacetaxine-based combination therapies for AML harboring mtRUNX1.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Core Binding Factor Alpha 2 Subunit/genetics , Homoharringtonine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Protein Synthesis Inhibitors/pharmacology , Sulfonamides/pharmacology , Cell Line, Tumor , Drug Synergism , Humans , Leukemia, Myeloid, Acute/genetics , Mutation/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
5.
Nature ; 558(7711): E5, 2018 06.
Article in English | MEDLINE | ID: mdl-29849140

ABSTRACT

In Fig. 3c of this Letter, the the effects of CRISPR-Cas9-mediated deletion of NR3C1, TXNIP and CNR2 in patient-derived B-lineage leukaemia cells were shown. For curves depicting NR3C1 (left graph), data s for TXNIP (middle graph) were inadvertently plotted. This figure has been corrected online, and the original Fig. 3c is shown as Supplementary Information to this Amendment for transparency. The error does not affect the conclusions of the Letter. In addition, Source Data files have been added for the Figs. 1-4 and Extended Data Figs. 1-10 of the original Letter.

6.
Blood ; 137(8): 1050-1060, 2021 02 25.
Article in English | MEDLINE | ID: mdl-32959058

ABSTRACT

Bortezomib (BTZ) was recently evaluated in a randomized phase 3 clinical trial by the Children's Oncology Group (COG) that compared standard chemotherapy (cytarabine, daunorubicin, and etoposide [ADE]) vs standard therapy with BTZ (ADEB) for de novo pediatric acute myeloid leukemia (AML). Although the study concluded that BTZ did not improve outcome overall, we examined patient subgroups benefiting from BTZ-containing chemotherapy using proteomic analyses. The proteasome inhibitor BTZ disrupts protein homeostasis and activates cytoprotective heat shock responses. Total heat shock factor 1 (HSF1) and phosphorylated HSF1 (HSF1-pSer326) were measured in leukemic cells from 483 pediatric patients using reverse phase protein arrays. HSF1-pSer326 phosphorylation was significantly lower in pediatric AML compared with CD34+ nonmalignant cells. We identified a strong correlation between HSF1-pSer326 expression and BTZ sensitivity. BTZ significantly improved outcome of patients with low-HSF1-pSer326 with a 5-year event-free survival of 44% (ADE) vs 67% for low-HSF1-pSer326 treated with ADEB (P = .019). To determine the effect of HSF1 expression on BTZ potency in vitro, cell viability with HSF1 gene variants that mimicked phosphorylated (S326A) and nonphosphorylated (S326E) HSF1-pSer326 were examined. Those with increased HSF1 phosphorylation showed clear resistance to BTZ vs those with wild-type or reduced HSF1-phosphorylation. We hypothesize that HSF1-pSer326 expression could identify patients who benefit from BTZ-containing chemotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Bortezomib/therapeutic use , Heat Shock Transcription Factors/genetics , Leukemia, Myeloid, Acute/drug therapy , Child , Child, Preschool , Drug Resistance, Neoplasm , Female , Humans , Infant , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Male , Point Mutation , Prognosis , Transcriptome
7.
Blood ; 138(23): 2383-2395, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34280258

ABSTRACT

Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton's tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc-mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453.


Subject(s)
Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Amino Acids/metabolism , Antineoplastic Agents/therapeutic use , Asparaginase/therapeutic use , Piperidines/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Adenine/pharmacology , Adenine/therapeutic use , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Asparaginase/pharmacology , Cell Line, Tumor , Humans , Mice , Piperidines/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction/drug effects
8.
Am J Hematol ; 98(8): 1196-1203, 2023 08.
Article in English | MEDLINE | ID: mdl-37183966

ABSTRACT

Reverse transcription polymerase chain reaction (RT-PCR) for BCR::ABL1 is the most common and widely accepted method of measurable residual disease (MRD) assessment in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL); however, RT-PCR may not be an optimal measure of MRD in many cases of Ph+ ALL. We evaluated the clinical impact of a highly sensitive next-generation sequencing (NGS) MRD assay (sensitivity of 10-6 ) and its correlation with RT-PCR for BCR::ABL1 in patients with Ph+ ALL. Overall, 32% of patients had a discordance between MRD assessment by RT-PCR and NGS, and 31% of patients who achieved NGS MRD negativity were PCR+ at the same timepoint. Among eight patients with long-term detectable BCR::ABL1 by PCR, six were PCR+/NGS-. These patients generally had stable PCR levels that persisted despite therapeutic interventions, and none subsequently relapsed; in contrast, patients who were PCR+/NGS+ had more variable PCR values that responded to therapeutic intervention. In a separate cohort of prospectively collected clinical samples, 11 of 65 patients (17%) with Ph+ ALL who achieved NGS MRD negativity had detectable BCR::ABL1 by PCR, and none of these patients relapsed. Relapse-free survival and overall survival were similar in patients who were PCR+/NGS- and PCR-/NGS-, suggesting that PCR for BCR::ABL1 did not provide additional prognostic information in patients who achieved NGS MRD negativity. NGS-based assessment of MRD is prognostic in Ph+ ALL and identifies patients with low-level detectable BCR::ABL1 who are unlikely to relapse nor to benefit from therapeutic interventions.


Subject(s)
Fusion Proteins, bcr-abl , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Fusion Proteins, bcr-abl/genetics , Prognosis , Reverse Transcriptase Polymerase Chain Reaction , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , High-Throughput Nucleotide Sequencing , Recurrence
9.
Nature ; 542(7642): 479-483, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28192788

ABSTRACT

B-lymphoid transcription factors, such as PAX5 and IKZF1, are critical for early B-cell development, yet lesions of the genes encoding these transcription factors occur in over 80% of cases of pre-B-cell acute lymphoblastic leukaemia (ALL). The importance of these lesions in ALL has, until now, remained unclear. Here, by combining studies using chromatin immunoprecipitation with sequencing and RNA sequencing, we identify a novel B-lymphoid program for transcriptional repression of glucose and energy supply. Our metabolic analyses revealed that PAX5 and IKZF1 enforce a state of chronic energy deprivation, resulting in constitutive activation of the energy-stress sensor AMPK. Dominant-negative mutants of PAX5 and IKZF1, however, relieved this glucose and energy restriction. In a transgenic pre-B ALL mouse model, the heterozygous deletion of Pax5 increased glucose uptake and ATP levels by more than 25-fold. Reconstitution of PAX5 and IKZF1 in samples from patients with pre-B ALL restored a non-permissive state and induced energy crisis and cell death. A CRISPR/Cas9-based screen of PAX5 and IKZF1 transcriptional targets identified the products of NR3C1 (encoding the glucocorticoid receptor), TXNIP (encoding a glucose-feedback sensor) and CNR2 (encoding a cannabinoid receptor) as central effectors of B-lymphoid restriction of glucose and energy supply. Notably, transport-independent lipophilic methyl-conjugates of pyruvate and tricarboxylic acid cycle metabolites bypassed the gatekeeper function of PAX5 and IKZF1 and readily enabled leukaemic transformation. Conversely, pharmacological TXNIP and CNR2 agonists and a small-molecule AMPK inhibitor strongly synergized with glucocorticoids, identifying TXNIP, CNR2 and AMPK as potential therapeutic targets. Furthermore, our results provide a mechanistic explanation for the empirical finding that glucocorticoids are effective in the treatment of B-lymphoid but not myeloid malignancies. Thus, B-lymphoid transcription factors function as metabolic gatekeepers by limiting the amount of cellular ATP to levels that are insufficient for malignant transformation.


Subject(s)
B-Lymphocytes/metabolism , Energy Metabolism/genetics , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Transcription Factors/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , B-Lymphocytes/drug effects , Carcinogenesis/genetics , Carrier Proteins/agonists , Carrier Proteins/metabolism , Cell Death , Chromatin Immunoprecipitation , Citric Acid Cycle , Disease Models, Animal , Female , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Ikaros Transcription Factor/metabolism , Mice , Mice, Transgenic , PAX5 Transcription Factor/deficiency , PAX5 Transcription Factor/genetics , PAX5 Transcription Factor/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Serine-Threonine Kinases/metabolism , Pyruvic Acid/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Receptors, Glucocorticoid/metabolism , Sequence Analysis, RNA
10.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982555

ABSTRACT

Proteomic DNA Damage Repair (DDR) expression patterns in Chronic Lymphocytic Leukemia were characterized by quantifying and clustering 24 total and phosphorylated DDR proteins. Overall, three protein expression patterns (C1-C3) were identified and were associated as an independent predictor of distinct patient overall survival outcomes. Patients within clusters C1 and C2 had poorer survival outcomes and responses to fludarabine, cyclophosphamide, and rituxan chemotherapy compared to patients within cluster C3. However, DDR protein expression patterns were not prognostic in more modern therapies with BCL2 inhibitors or a BTK/PI3K inhibitor. Individually, nine of the DDR proteins were prognostic for predicting overall survival and/or time to first treatment. When looking for other proteins that may be associated with or influenced by DDR expression patterns, our differential expression analysis found that cell cycle and adhesion proteins were lower in clusters compared to normal CD19 controls. In addition, cluster C3 had a lower expression of MAPK proteins compared to the poor prognostic patient clusters thus implying a potential regulatory connection between adhesion, cell cycle, MAPK, and DDR signaling in CLL. Thus, assessing the proteomic expression of DNA damage proteins in CLL provided novel insights for deciphering influences on patient outcomes and expanded our understanding of the potential complexities and effects of DDR cell signaling.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proteomics , DNA Damage , Discoidin Domain Receptors/genetics
11.
Int J Mol Sci ; 24(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36982970

ABSTRACT

The survival of malignant leukemic cells is dependent on DNA damage repair (DDR) signaling. Reverse Phase Protein Array (RPPA) data sets were assembled using diagnostic samples from 810 adult and 500 pediatric acute myelogenous leukemia (AML) patients and were probed with 412 and 296 strictly validated antibodies, respectively, including those detecting the expression of proteins directly involved in DDR. Unbiased hierarchical clustering identified strong recurrent DDR protein expression patterns in both adult and pediatric AML. Globally, DDR expression was associated with gene mutational statuses and was prognostic for outcomes including overall survival (OS), relapse rate, and remission duration (RD). In adult patients, seven DDR proteins were individually prognostic for either RD or OS. When DDR proteins were analyzed together with DDR-related proteins operating in diverse cellular signaling pathways, these expanded groupings were also highly prognostic for OS. Analysis of patients treated with either conventional chemotherapy or venetoclax combined with a hypomethylating agent revealed protein clusters that differentially predicted favorable from unfavorable prognoses within each therapy cohort. Collectively, this investigation provides insight into variable DDR pathway activation in AML and may help direct future individualized DDR-targeted therapies in AML patients.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Adult , Child , Prognosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , DNA Repair/genetics , DNA Damage , Discoidin Domain Receptors/genetics
12.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982537

ABSTRACT

DNA damage response (DNADR) recognition and repair (DDR) pathways affect carcinogenesis and therapy responsiveness in cancers, including leukemia. We measured protein expression levels of 16 DNADR and DDR proteins using the Reverse Phase Protein Array methodology in acute myeloid (AML) (n = 1310), T-cell acute lymphoblastic leukemia (T-ALL) (n = 361) and chronic lymphocytic leukemia (CLL) (n = 795) cases. Clustering analysis identified five protein expression clusters; three were unique compared to normal CD34+ cells. Individual protein expression differed by disease for 14/16 proteins, with five highest in CLL and nine in T-ALL, and by age in T-ALL and AML (six and eleven proteins, respectively), but not CLL (n = 0). Most (96%) of the CLL cases clustered in one cluster; the other 4% were characterized by higher frequencies of deletion 13q and 17p, and fared poorly (p < 0.001). T-ALL predominated in C1 and AML in C5, but both occurred in all four acute-dominated clusters. Protein clusters showed similar implications for survival and remission duration in pediatric and adult T-ALL and AML populations, with C5 doing best in all. In summary, DNADR and DDR protein expression was abnormal in leukemia and formed recurrent clusters that were shared across the leukemias with shared prognostic implications across diseases, and individual proteins showed age- and disease-related differences.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Myeloid, Acute , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Adult , Child , Leukemia, Myeloid, Acute/genetics , Protein Array Analysis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Proteins/genetics , Chronic Disease , DNA Damage/genetics
13.
Haematologica ; 107(10): 2329-2343, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35021602

ABSTRACT

Pediatric acute myeloid leukemia (AML) remains a fatal disease for at least 30% of patients, stressing the need for improved therapies and better risk stratification. As proteins are the unifying feature of (epi)genetic and environmental alterations, and are often targeted by novel chemotherapeutic agents, we studied the proteomic landscape of pediatric AML. Protein expression and activation levels were measured in 500 bulk leukemic patients' samples and 30 control CD34+ cell samples, using reverse phase protein arrays with 296 strictly validated antibodies. The multistep MetaGalaxy analysis methodology was applied and identified nine protein expression signatures (PrSIG), based on strong recurrent protein expression patterns. PrSIG were associated with cytogenetics and mutational state, and with favorable or unfavorable prognosis. Analysis based on treatment (i.e., ADE vs. ADE plus bortezomib) identified three PrSIG that did better with ADE plus bortezomib than with ADE alone. When PrSIG were studied in the context of cytogenetic risk groups, PrSIG were independently prognostic after multivariate analysis, suggesting a potential value for proteomics in combination with current classification systems. Proteins with universally increased (n=7) or decreased (n=17) expression were observed across PrSIG. Certain proteins significantly differentially expressed from normal could be identified, forming a hypothetical platform for personalized medicine.


Subject(s)
Leukemia, Myeloid, Acute , Proteomics , Bortezomib , Child , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Prognosis , Protein Array Analysis , Proteins
14.
Am J Hematol ; 97(8): 1035-1043, 2022 08.
Article in English | MEDLINE | ID: mdl-35583199

ABSTRACT

Multi-agent induction chemotherapy (IC) improves response rates in younger patients with acute myeloid leukemia (AML); however, relapse remains the principal cause of treatment failure. Improved induction regimens are needed. A prospective single-center phase Ib/II study evaluating fludarabine, cytarabine, G-CSF, and idarubicin combined with venetoclax (FLAG-IDA + VEN) in patients with newly diagnosed (ND) or relapsed/refractory AML. The primary efficacy endpoint was assessment of overall activity (overall response rate [ORR]: complete remission [CR] + CR with partial hematologic recovery [CRh] + CR with incomplete hematologic recovery [CRi] + morphologic leukemia free state + partial response). Secondary objectives included additional assessments of efficacy, overall survival (OS), and event-free survival (EFS). Results of the expanded ND cohort with additional follow-up are reported. Forty-five patients (median age: 44 years [range 20-65]) enrolled. ORR was 98% (N = 44/45; 95% credible interval 89.9%-99.7%). Eighty-nine percent (N = 40/45) of patients attained a composite CR (CRc + CRh + CRi) including 93% (N = 37/40) who were measurable residual disease (MRD) negative. Twenty-seven (60%) patients transitioned to allogeneic stem cell transplant (alloHSCT). Common non-hematologic adverse events included febrile neutropenia (44%; N = 20), pneumonia (22%, N = 10), bacteremia (18%, N = 8), and skin/soft tissue infections (44%, N = 20). After a median follow-up of 20 months, median EFS and OS were not reached. Estimated 24-month EFS and OS were 64% and 76%, respectively. FLAG-IDA + VEN is an active regimen in ND-AML capable of producing high MRD-negative remission rates and enabling transition to alloHSCT when appropriate in most patients. Toxicities were as expected with IC and were manageable. Estimated 24-month survival appears favorable compared to historical IC benchmarks.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Idarubicin , Leukemia, Myeloid, Acute , Sulfonamides , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cytarabine/therapeutic use , Granulocyte Colony-Stimulating Factor/therapeutic use , Humans , Idarubicin/therapeutic use , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Middle Aged , Prospective Studies , Remission Induction , Sulfonamides/adverse effects , Sulfonamides/therapeutic use , Vidarabine/therapeutic use , Young Adult
15.
Cancer ; 127(20): 3761-3771, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34171128

ABSTRACT

BACKGROUND: Patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) have limited treatment options. In preclinical models of AML, inhibition of the PD-1/PD-L1 axis demonstrated antileukemic activity. Avelumab is an anti-PD-L1 immune checkpoint inhibitor (ICI) approved in multiple solid tumors. The authors conducted a phase 1b/2 clinical trial to assess the safety and efficacy of azacitidine with avelumab in patients with R/R AML. METHODS: Patients aged ≥18 years who had R/R AML received azacitidine 75 mg/m2 on days 1 through 7 and avelumab on days 1 and 14 of 28-day cycles. RESULTS: Nineteen patients were treated. The median age was 66 years (range, 22-83 years), 100% had European LeukemiaNet 2017 adverse-risk disease, and 63% had prior exposure to a hypomethylating agent. Avelumab was dosed at 3 mg/kg for the first 7 patients and at 10 mg/kg for the subsequent 12 patients. The most common grade ≥3 treatment-related adverse events were neutropenia and anemia in 2 patients each. Two patients experienced immune-related adverse events of grade 2 and grade 3 pneumonitis, respectively. The overall complete remission rate was 10.5%, and both were complete remission with residual thrombocytopenia. The median overall survival was 4.8 months. Bone marrow blasts were analyzed for immune-related markers by mass cytometry and demonstrated significantly higher expression of PD-L2 compared with PD-L1 both pretherapy and at all time points during therapy, with increasing PD-L2 expression on therapy. CONCLUSIONS: Although the combination of azacitidine and avelumab was well tolerated, clinical activity was limited. High expression of PD-L2 on bone marrow blasts may be an important mechanism of resistance to anti-PD-L1 therapy in AML. LAY SUMMARY: This report describes the results of a phase 1b/2 study of azacitidine with the anti-PD-L1 immune checkpoint inhibitor avelumab for patients with relapsed/refractory acute myeloid leukemia (AML). The clinical activity of the combination therapy was modest, with an overall response rate of 10.5%. However, mass cytometry analysis revealed significantly higher expression of PD-L2 compared with PD-L1 on AML blasts from all patients who were analyzed at all time points. These data suggest a novel potential role for PD-L2 as a means of AML immune escape.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Azacitidine/adverse effects , B7-H1 Antigen , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Middle Aged , Young Adult
16.
Expert Rev Proteomics ; 18(12): 1087-1097, 2021 12.
Article in English | MEDLINE | ID: mdl-34965151

ABSTRACT

INTRODUCTION: Acute leukemia results from a series of mutational events that alter cell growth and proliferation. Mutations result in protein changes that orchestrate growth alterations characteristic of leukemia. Proteomics is a methodology appropriate for study of protein changes found in leukemia. The high-throughput reverse phase protein array (RPPA) technology is particularly well-suited for the assessment of protein changes in samples derived from clinical trials. AREAS COVERED: This review discusses the technical, methodological, and analytical issues related to the successful development of acute leukemia RPPAs. EXPERT COMMENTARY: To obtain representative protein sample lysates, samples should be prepared from freshly collected blood or bone marrow material. Variables such as sample shipment, transit time, and holding temperature only have minimal effects on protein expression. CellSave preservation tubes are preferred for cells collected after exposure to chemotherapy, and incorporation of standardized guidelines for antibody validation is recommended. A more systematic biological approach to analyze protein expression is desired, searching for recurrent patterns of protein expression that allow classification of patients into risk groups, or groups of patients that may be treated similarly. Comparing RPPA protein analysis between cell lines and primary samples shows that cell lines are not representative of patient proteomic patterns.


Subject(s)
Leukemia, Myeloid, Acute , Protein Array Analysis , Humans , Leukemia, Myeloid, Acute/drug therapy , Protein Processing, Post-Translational , Proteins , Proteomics
17.
Blood ; 134(1): 59-73, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31023702

ABSTRACT

RUNX1 transcription factor regulates normal and malignant hematopoiesis. Somatic or germline mutant RUNX1 (mtRUNX1) is associated with poorer outcome in acute myeloid leukemia (AML). Knockdown or inhibition of RUNX1 induced more apoptosis of AML expressing mtRUNX1 versus wild-type RUNX1 and improved survival of mice engrafted with mtRUNX1-expressing AML. CRISPR/Cas9-mediated editing-out of RUNX1 enhancer (eR1) within its intragenic super-enhancer, or BET protein BRD4 depletion by short hairpin RNA, repressed RUNX1, inhibited cell growth, and induced cell lethality in AML cells expressing mtRUNX1. Moreover, treatment with BET protein inhibitor or degrader (BET-proteolysis targeting chimera) repressed RUNX1 and its targets, inducing apoptosis and improving survival of mice engrafted with AML expressing mtRUNX1. Library of Integrated Network-based Cellular Signatures 1000-connectivity mapping data sets queried with messenger RNA signature of RUNX1 knockdown identified novel expression-mimickers (EMs), which repressed RUNX1 and exerted in vitro and in vivo efficacy against AML cells expressing mtRUNX1. In addition, the EMs cinobufagin, anisomycin, and narciclasine induced more lethality in hematopoietic progenitor cells (HPCs) expressing germline mtRUNX1 from patients with AML compared with HPCs from patients with familial platelet disorder (FPD), or normal untransformed HPCs. These findings highlight novel therapeutic agents for AML expressing somatic or germline mtRUNX1.


Subject(s)
Antineoplastic Agents/pharmacology , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Leukemia, Myeloid, Acute/genetics , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Core Binding Factor Alpha 2 Subunit/genetics , Gene Knockdown Techniques , Germ-Line Mutation , Hematopoietic Stem Cells/drug effects , Humans , Mice
18.
Am J Hematol ; 96(11): 1420-1428, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34351647

ABSTRACT

TP53 mutations in acute myeloid leukemia (AML) are associated with resistance to standard treatments and dismal outcomes. The incidence and prognostic impact of the emergence of newly detectable TP53 mutations over the course of AML therapy has not been well described. We retrospectively analyzed 200 patients with newly diagnosed TP53 wild type AML who relapsed after or were refractory to frontline therapy. Twenty-nine patients (15%) developed a newly detectable TP53 mutation in the context of relapsed/refractory disease. The median variant allelic frequency (VAF) was 15% (range, 1.1%-95.6%). TP53 mutations were more common after intensive therapy versus lower-intensity therapy (23% vs. 10%, respectively; p = 0.02) and in patients who had undergone hematopoietic stem cell transplant versus those who had not (36% vs. 12%, respectively; p = 0.005). Lower TP53 VAF was associated with an increased likelihood of complete remission (CR) or CR with incomplete hematologic recovery (CRi) compared to higher TP53 VAF (CR/CRi rate of 41% for VAF < 20% vs. 13% for VAF ≥ 20%, respectively). The median overall survival (OS) after acquisition of TP53 mutation was 4.6 months, with a 1-year OS rate of 19%. TP53 VAF at relapse was significantly associated with OS; the median OS of patients with TP53 VAF ≥ 20% was 3.5 months versus 6.1 months for those with TP53 VAF < 20% (p < 0.05). In summary, new TP53 mutations may be acquired throughout the course of AML therapy. Sequential monitoring for TP53 mutations is likely to be increasingly relevant in the era of emerging TP53-targeting therapies for AML.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Tumor Suppressor Protein p53/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Disease Management , Gene Frequency , Hematopoietic Stem Cell Transplantation , Humans , Leukemia, Myeloid, Acute/therapy , Middle Aged , Mutation , Retrospective Studies , Young Adult
19.
Am J Hematol ; 96(3): 282-291, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33264443

ABSTRACT

Hypomethylating agents (HMA) with venetoclax is a new standard for older/unfit patients with acute myeloid leukemia (AML). However, it is unknown how HMA with venetoclax compare to intensive chemotherapy (IC) in patients who are "fit" or "unfit" for IC. We compared outcomes of older patients with newly diagnosed AML receiving 10-day decitabine with venetoclax (DEC10-VEN) vs IC. DEC10-VEN consisted of daily venetoclax with decitabine 20 mg/m2 for 10 days for induction and decitabine for 5 days as consolidation. The IC cohort received regimens containing cytarabine ≥1 g/m2 /d. A validated treatment-related mortality score (TRMS) was used to classify patients at high-risk or low-risk for TRM with IC. Propensity scores were used to match patients to minimize bias. Median age of the DEC10-VEN cohort (n = 85) was 72 years (range 63-89) and 28% patients were at high-risk of TRM with IC. The comparator IC group (n = 85) matched closely in terms of baseline characteristics. DEC10-VEN was associated with significantly higher CR/CRi compared to IC (81% vs 52%, P < .001), and lower rate of relapse (34% vs 56%, P = .01), 30-day mortality (1% vs 24%, P < .01), and longer overall survival (OS; 12.4 vs 4.5 months, HR = 0.48, 95%CI 0.29-0.79, P < .01). In patients at both at high-risk and low-risk of TRM, DEC10-VEN showed significantly higher CR/CRi, lower 30-day mortality, and longer OS compared to IC. Patients at both high-risk and low-risk of TRM had comparable outcomes with DEC10-VEN. In conclusion, DEC10-VEN offers better outcomes compared to intensive chemotherapy in older patients with newly diagnosed AML, particularly in those at high-risk of TRM.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Clinical Trials, Phase II as Topic/statistics & numerical data , Combined Modality Therapy , Consolidation Chemotherapy , Cytarabine/administration & dosage , Decitabine/administration & dosage , Decitabine/adverse effects , Drug Administration Schedule , Drug Evaluation , Female , Hematopoietic Stem Cell Transplantation , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/surgery , Male , Middle Aged , Progression-Free Survival , Propensity Score , Recurrence , Remission Induction , Retrospective Studies , Risk , Sulfonamides/administration & dosage , Sulfonamides/adverse effects
20.
Expert Rev Proteomics ; 17(1): 1-10, 2020 01.
Article in English | MEDLINE | ID: mdl-31945303

ABSTRACT

Introduction: The biological heterogeneity of acute myeloid leukemia (AML) complicates personalized medicine. Individual prognosis is typically based on the presence of chromosomal and genetic lesions. Nevertheless, these classifications often lack a priori information about response to therapy. Since the protein expression landscape reflects the functional activity state of cells, we hypothesize that analyzing this can be used for the identification of protein activity markers to provide better risk stratification as well as may provide targeted therapeutic guidance in AML.Areas covered: Herein, we review recently new adopted drugs in the treatment for AML and discuss how quantitative proteomic techniques may contribute to better therapeutic selection in AML.Expert commentary: The net functional state of the cell is defined by the activity of protein within all the pathways that are active in the cell. Recognition of the proteomic profile of the leukemic blast could, therefore, complement current classification systems by providing a better a priori description of what pathways are important within a cell as a guide to the selection of therapy for the patient.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Molecular Targeted Therapy/methods , Proteomics/methods , Animals , Antineoplastic Agents/therapeutic use , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mass Spectrometry/methods , Proteome/genetics , Proteome/metabolism , Translational Research, Biomedical/methods
SELECTION OF CITATIONS
SEARCH DETAIL