Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Blood ; 143(6): 507-521, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38048594

ABSTRACT

ABSTRACT: Chimeric antigen receptor T-cell (CAR T) therapy has produced remarkable clinical responses in B-cell neoplasms. However, many challenges limit this class of agents for the treatment of other cancer types, in particular the lack of tumor-selective antigens for solid tumors and other hematological malignancies, such as acute myeloid leukemia (AML), which may be addressed without significant risk of severe toxicities while providing sufficient abundance for efficient tumor suppression. One approach to overcome this hurdle is dual targeting by an antibody-T-cell receptor (AbTCR) and a chimeric costimulatory signaling receptor (CSR) to 2 different antigens, in which both antigens are found together on the cancer cells but not together on normal cells. To explore this proof of concept in AML, we engineered a new T-cell format targeting Wilms tumor 1 protein (WT1) and CD33; both are highly expressed on most AML cells. Using an AbTCR comprising a newly developed TCR-mimic monoclonal antibody against the WT1 RMFPNAPYL (RMF) epitope/HLA-A2 complex, ESK2, and a secondary CSR comprising a single-chain variable fragment directed to CD33 linked to a truncated CD28 costimulatory fragment, this unique platform confers specific T-cell cytotoxicity to the AML cells while sparing healthy hematopoietic cells, including CD33+ myelomonocytic normal cells. These data suggest that this new platform, named AbTCR-CSR, through the combination of a AbTCR CAR and CSR could be an effective strategy to reduce toxicity and improve specificity and clinical outcomes in adoptive T-cell therapy in AML.


Subject(s)
Leukemia, Myeloid, Acute , Single-Chain Antibodies , Humans , T-Lymphocytes , Receptors, Antigen, T-Cell , Leukemia, Myeloid, Acute/pathology , Immunotherapy, Adoptive
2.
Cancer Immunol Immunother ; 72(11): 3773-3786, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37635172

ABSTRACT

Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR T cell therapy in epithelial ovarian cancer and other cancers.


Subject(s)
Ovarian Neoplasms , Receptors, Chimeric Antigen , Humans , Mice , Female , Animals , Carcinoma, Ovarian Epithelial/therapy , Ovarian Neoplasms/therapy , Antigens, Neoplasm , T-Lymphocytes , WT1 Proteins
3.
Cancer Immunol Immunother ; 70(5): 1189-1202, 2021 May.
Article in English | MEDLINE | ID: mdl-33123756

ABSTRACT

Identification of neoepitopes as tumor-specific targets remains challenging, especially for cancers with low mutational burden, such as ovarian cancer. To identify mutated human leukocyte antigen (HLA) ligands as potential targets for immunotherapy in ovarian cancer, we combined mass spectrometry analysis of the major histocompatibility complex (MHC) class I peptidomes of ovarian cancer cells with parallel sequencing of whole exome and RNA in a patient with high-grade serous ovarian cancer. Four of six predicted mutated epitopes capable of binding to HLA-A*02:01 induced peptide-specific T cell responses in blood from healthy donors. In contrast, all six peptides failed to induce autologous peptide-specific response by T cells in peripheral blood or tumor-infiltrating lymphocytes from ascites of the patient. Surprisingly, T cell responses against a low-affinity p53-mutant Y220C epitope were consistently detected in the patient with either unprimed or in vitro peptide-stimulated T cells even though the patient's primary tumor did not bear this mutation. Our results demonstrated that tumor heterogeneity and distinct immune microenvironments within a patient should be taken into consideration for identification of immunogenic neoantigens. T cell responses to a driver gene-derived p53 Y220C mutation in ovarian cancer warrant further study.


Subject(s)
Antigens, Neoplasm/metabolism , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/metabolism , Immunotherapy, Adoptive/methods , Mutation/genetics , Ovarian Neoplasms/immunology , T-Lymphocytes/immunology , Tumor Suppressor Protein p53/metabolism , Antigens, Neoplasm/genetics , Cells, Cultured , Epitopes, T-Lymphocyte/genetics , Female , HLA-A2 Antigen/genetics , Humans , Middle Aged , Neoplasm Staging , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Exome Sequencing
4.
Res Sq ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37214945

ABSTRACT

Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR-T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR-T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR-T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR-T cell therapy in epithelial ovarian cancer and other cancers.

5.
Blood ; 116(2): 171-9, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20400682

ABSTRACT

A pilot study was undertaken to assess the safety, activity, and immunogenicity of a polyvalent Wilms tumor gene 1 (WT1) peptide vaccine in patients with acute myeloid leukemia in complete remission but with molecular evidence of WT1 transcript. Patients received 6 vaccinations with 4 WT1 peptides (200 microg each) plus immune adjuvants over 12 weeks. Immune responses were evaluated by delayed-type hypersensitivity, CD4+ T-cell proliferation, CD3+ T-cell interferon-gamma release, and WT1 peptide tetramer staining. Of the 9 evaluable patients, 7 completed 6 vaccinations and WT1-specific T-cell responses were noted in 7 of 8 patients. Three patients who were HLA-A0201-positive showed significant increase in interferon-gamma-secreting cells and frequency of WT1 tetramer-positive CD8+ T cells. Three patients developed a delayed hypersensitivity reaction after vaccination. Definite related toxicities were minimal. With a mean follow-up of 30 plus or minus 8 months after diagnosis, median disease-free survival has not been reached. These preliminary data suggest that this polyvalent WT1 peptide vaccine can be administered safely to patients with a resulting immune response. Further studies are needed to establish the role of vaccination as viable postremission therapy for acute myeloid leukemia.


Subject(s)
Cancer Vaccines/therapeutic use , Leukemia, Myeloid, Acute/therapy , Oncogene Proteins/therapeutic use , Vaccination/methods , WT1 Proteins/therapeutic use , Adult , Aged , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cytotoxicity, Immunologic , Disease-Free Survival , Female , HLA-A Antigens/genetics , HLA-A Antigens/immunology , HLA-A2 Antigen , Humans , Hypersensitivity, Delayed/immunology , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Oncogene Proteins/genetics , Oncogene Proteins/immunology , Pilot Projects , Remission Induction , Reverse Transcriptase Polymerase Chain Reaction , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , WT1 Proteins/immunology , Young Adult
6.
PLoS One ; 17(3): e0265534, 2022.
Article in English | MEDLINE | ID: mdl-35298559

ABSTRACT

More effective treatments are needed for human papilloma virus (HPV)-induced cancers despite HPV virus vaccination. The oncogenic HPV protein targets are currently undruggable and intracellular and therefore there are no antibodies to these targets. Here we report the discovery of TCR mimic monoclonal antibodies (TCRm mAb) specific for the HPV E7 protein p11-19, YMLDLQPET, when presented on the cell surface in the context of HLA-A*02:01 by use of human phage display libraries. One of the mAbs, 3F8, was able to specifically mediate T cell- redirected cytotoxicity, in a bispecific T cell engager (BiTE) form. While further studies are required to assess the therapeutic potential of this approach, the study provided the proof of concept that TCRm mAb could be a therapeutic strategy for HPV-induced human cancers.


Subject(s)
Antineoplastic Agents, Immunological , Neoplasms , Oncogene Proteins, Viral , Papillomavirus Infections , Antibodies, Monoclonal , Epitopes , HLA-A Antigens , Human papillomavirus 16 , Humans , Neoplasms/drug therapy , Papillomavirus E7 Proteins , Papillomavirus Infections/drug therapy , Receptors, Antigen, T-Cell
7.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: mdl-35260532

ABSTRACT

Phosphopeptides derived from dysregulated protein phosphorylation in cancer cells can be processed and presented by MHC class I and class II molecules and, therefore, represent an untapped class of tumor-specific antigens that could be used as widely expressed "public" cancer neoantigens (NeoAgs). We generated a TCR mimic (TCRm) mAb, 6B1, specific for a phosphopeptide derived from insulin receptor substrate 2 (pIRS2) presented by HLA-A*02:01. The pIRS2 epitope's presentation by HLA-A*02:01 was confirmed by mass spectrometry. The TCRm 6B1 specifically bound to pIRS2/HLA-A2 complex on tumor cell lines that expressed pIRS2 in the context of HLA-A*02:01. Bispecific mAbs engaging CD3 of T cells were able to kill tumor cell lines in a pIRS2- and HLA-A*02:01-restricted manner. Structure modeling shows a prerequisite for an arginine or lysine at the first position to bind mAb. Therefore, 6B1 could recognize phosphopeptides derived from various phosphorylated proteins with similar amino acid compositions. This raised the possibility that a TCRm specific for the pIRS2/HLA-A2 complex could target a range of phosphopeptides presented by HLA-A*02:01 in various tumor cells. This is the first TCRm mAb to our knowledge targeting a phosphopeptide/MHC class I complex; the potential of this class of agents for clinical applications warrants further investigation.


Subject(s)
HLA-A2 Antigen , Phosphopeptides , Antibodies, Monoclonal/metabolism , Insulin Receptor Substrate Proteins/metabolism , Phosphopeptides/metabolism , Receptors, Antigen, T-Cell/metabolism
8.
Cancer Immunol Immunother ; 59(10): 1467-79, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20532500

ABSTRACT

BACKGROUND: The transcription factor, WT1, is highly overexpressed in malignant pleural mesothelioma (MPM) and immunohistochemical stains for WT1 are used routinely to aid in its diagnosis. Using computer prediction analysis we designed analog peptides derived from WT1 sequences by substituting amino acids at key HLA-A0201 binding positions. We tested the safety and immunogenicity of a WT1 vaccine comprised of four class I and class II peptides in patients with thoracic neoplasms expressing WT1. METHODS: Therapy consisted of six subcutaneous vaccinations administered with Montanide adjuvant on weeks 0, 4, 6, 8, 10, and 12, with 6 additional monthly injections for responding patients. Injection sites were pre-stimulated with GM-CSF (70 mcg). Immune responses were evaluated by DTH, CD4 T-cell proliferation, CD8 T-cell interferon gamma release, intracellular cytokine staining, WT1 peptide MHC-tetramer staining, and cytotoxicity against WT1 positive tumor cells. RESULTS: Nine patients with MPM and 3 with NSCLC were vaccinated, with 8 patients receiving at least 6 vaccinations; in total, 10 patients were evaluable for immune response. Six out of nine patients tested demonstrated CD4 T-cell proliferation to WT1 specific peptides, and five of the six HLA-A0201 patients tested mounted a CD8 T-cell response. Stimulated T cells were capable of cytotoxicity against WT-1 positive cells. Vaccination also induced polyfunctional CD8 T cell responses. CONCLUSIONS: This multivalent WT1 peptide analog vaccine induces immune responses in a high proportion of patients with thoracic malignancies with minimal toxicity. A randomized trial testing this vaccine as adjuvant therapy in MPM is planned.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/therapeutic use , Carcinoma, Non-Small-Cell Lung , Mesothelioma , Peptide Fragments , WT1 Proteins/therapeutic use , Aged , Aged, 80 and over , Amino Acid Sequence , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Cell Line , Female , Humans , Immunohistochemistry , Immunotherapy , Male , Mesothelioma/immunology , Mesothelioma/therapy , Middle Aged , Molecular Sequence Data , Neoplasm Staging , Peptide Fragments/genetics , WT1 Proteins/administration & dosage , WT1 Proteins/genetics
9.
Cancer Biother Radiopharm ; 35(6): 459-473, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32013538

ABSTRACT

An α particle-emitting nanodrug that is a potent and specific antitumor agent and also prompts significant remodeling of local immunity in the tumor microenvironment (TME) has been developed and may impact the treatment of melanoma. Biocompatible ultrasmall fluorescent core-shell silica nanoparticles (C' dots, diameter ∼6.0 nm) have been engineered to target the melanocortin-1 receptor expressed on melanoma through α melanocyte-stimulating hormone peptides attached to the C' dot surface. Actinium-225 is also bound to the nanoparticle to deliver a densely ionizing dose of high-energy α particles to cancer. Nanodrug pharmacokinetic properties are optimal for targeted radionuclide therapy as they exhibit rapid blood clearance, tumor-specific accumulation, minimal off-target localization, and renal elimination. Potent and specific tumor control, arising from the α particles, was observed in a syngeneic animal model of melanoma. Surprisingly, the C' dot component of this drug initiates a favorable pseudopathogenic response in the TME generating distinct changes in the fractions of naive and activated CD8 T cells, Th1 and regulatory T cells, immature dendritic cells, monocytes, MΦ and M1 macrophages, and activated natural killer cells. Concomitant upregulation of the inflammatory cytokine genome and adaptive immune pathways each describes a macrophage-initiated pseudoresponse to a viral-shaped pathogen. This study suggests that therapeutic α-particle irradiation of melanoma using ultrasmall functionalized core-shell silica nanoparticles potently kills tumor cells, and at the same time initiates a distinct immune response in the TME.


Subject(s)
Alpha Particles/therapeutic use , Drug Carriers/chemistry , Melanoma, Experimental/radiotherapy , Radiopharmaceuticals/administration & dosage , Skin Neoplasms/radiotherapy , Tumor Microenvironment/radiation effects , Actinium/administration & dosage , Actinium/pharmacokinetics , Animals , Cell Line, Tumor/transplantation , Computational Biology , Disease Models, Animal , Dose-Response Relationship, Radiation , Female , Gene Expression Regulation, Neoplastic/immunology , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Immunity, Cellular/genetics , Immunity, Cellular/radiation effects , Male , Maximum Tolerated Dose , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Molecular Targeted Therapy/methods , Nanoparticles/chemistry , RNA-Seq , Radiopharmaceuticals/pharmacokinetics , Receptor, Melanocortin, Type 1/antagonists & inhibitors , Receptor, Melanocortin, Type 1/metabolism , Silicon Dioxide/chemistry , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Tissue Distribution , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
10.
Cancer Immunol Res ; 7(12): 1984-1997, 2019 12.
Article in English | MEDLINE | ID: mdl-31540894

ABSTRACT

T-cell immunotherapies are often thwarted by the limited presentation of tumor-specific antigens abetted by the downregulation of human leukocyte antigen (HLA). We showed that drugs inhibiting ALK and RET produced dose-related increases in cell-surface HLA in tumor cells bearing these mutated kinases in vitro and in vivo, as well as elevated transcript and protein expression of HLA and other antigen-processing machinery. Subsequent analysis of HLA-presented peptides after ALK and RET inhibitor treatment identified large changes in the immunopeptidome with the appearance of hundreds of new antigens, including T-cell epitopes associated with impaired peptide processing (TEIPP) peptides. ALK inhibition additionally decreased PD-L1 levels by 75%. Therefore, these oncogenes may enhance cancer formation by allowing tumors to evade the immune system by downregulating HLA expression. Altogether, RET and ALK inhibitors could enhance T-cell-based immunotherapies by upregulating HLA, decreasing checkpoint blockade ligands, and revealing new, immunogenic, cancer-associated antigens.


Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Antigens, Neoplasm/immunology , Histocompatibility Antigens Class I/immunology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Animals , Antigen Presentation/drug effects , Cell Line, Tumor , Crizotinib/pharmacology , Female , Humans , Mice, Transgenic , Neoplasms/immunology , Peptides/immunology , Pyrimidines/pharmacology , Sulfones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL