Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Microb Cell Fact ; 23(1): 65, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402203

ABSTRACT

BACKGROUND: Flavokawain B is one of the naturally occurring chalcones in the kava plant (Piper methysticum). It exhibits anticancer, anti-inflammatory and antimalarial properties. Due to its therapeutic potential, flavokawain B holds promise for the treatment of many diseases. However, due to its poor bioavailability and low aqueous solubility, its application remains limited. The attachment of a sugar unit impacts the stability and solubility of flavonoids and often determines their bioavailability and bioactivity. Biotransformation is an environmentally friendly way to improve the properties of compounds, for example, to increase their hydrophilicity and thus affect their bioavailability. Recent studies proved that entomopathogenic filamentous fungi from the genera Isaria and Beauveria can perform O-methylglycosylation of hydroxyflavonoids or O-demethylation and hydroxylation of selected chalcones and flavones. RESULTS: In the present study, we examined the ability of entomopathogenic filamentous fungal strains of Beauveria bassiana, Beauveria caledonica, Isaria farinosa, Isaria fumosorosea, and Isaria tenuipes to transform flavokawain B into its glycosylated derivatives. The main process occurring during the reaction is O-demethylation and/or hydroxylation followed by 4-O-methylglycosylation. The substrate used was characterized by low susceptibility to transformations compared to our previously described transformations of flavones and chalcones in the cultures of the tested strains. However, in the culture of the B. bassiana KCh J1.5 and BBT, Metarhizium robertsii MU4, and I. tenuipes MU35, the expected methylglycosides were obtained with high yields. Cheminformatic analyses indicated altered physicochemical and pharmacokinetic properties in the derivatives compared to flavokawain B. Pharmacological predictions suggested potential anticarcinogenic activity, caspase 3 stimulation, and antileishmanial effects. CONCLUSIONS: In summary, the study provided valuable insights into the enzymatic transformations of flavokawain B by entomopathogenic filamentous fungi, elucidating the structural modifications and predicting potential pharmacological activities of the obtained derivatives. The findings contribute to the understanding of the biocatalytic capabilities of these microbial cultures and the potential therapeutic applications of the modified flavokawain B derivatives.


Subject(s)
Chalcones , Flavones , Flavonoids/metabolism , Flavones/metabolism , Biotransformation
2.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273218

ABSTRACT

The pursuit of novel or modified substances based on a natural origin, like flavonoids, is essential in addressing the increasing number of diseases and bacterial resistance to antibiotics, as well as in maintaining intestinal balance and enhancing overall gut health. The primary goal of this research was to evaluate the impact of specific flavonoid compounds-chalcones, flavanones, and flavones-substituted with -Br, -Cl, -CH3, and -NO2 on both pathogenic and probiotic microorganisms. Additionally, this study aimed to understand these compounds' influence on standardized normal and pathologically altered intestinal microbiomes. 8-Bromo-6-chloroflavone 4'-O-ß-D-(4″-O-methyl)-glucopyranoside and 8-bromo-6-chloroflavanone showed the most promising results as bactericidal agents. They significantly limited or inhibited the growth of pathogenic bacteria without adversely affecting the probiotic's growth. Digestion in vitro studies indicated that 6-methyl-8-nitroflavone and 8-bromo-6-chloroflavone positively modulated the gut microbiome by increasing beneficial bacteria and reducing potentially pathogenic microbes. This effect was most notable in microbiomes characteristic of older individuals and those recovering from chemotherapy or antibiotic treatments. This study underscores the therapeutic potential of flavonoid compounds, particularly those with specific halogen and nitro substitutions, in enhancing gut health.


Subject(s)
Flavonoids , Gastrointestinal Microbiome , Probiotics , Flavonoids/pharmacology , Flavonoids/chemistry , Gastrointestinal Microbiome/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Bacteria/growth & development , Kinetics
3.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791577

ABSTRACT

The search for new substances of natural origin, such as flavonoids, is necessary in the fight against the growing number of diseases and bacterial resistance to antibiotics. In our research, we wanted to check the influence of flavonoids with chlorine or bromine atoms and a nitro group on pathogenic and probiotic bacteria. We synthesized flavonoids using Claisen-Schmidt condensation and its modifications, and through biotransformation via entomopathogenic filamentous fungi, we obtained their glycoside derivatives. Biotransformation yielded two new flavonoid glycosides: 8-amino-6-chloroflavone 4'-O-ß-D-(4″-O-methyl)-glucopyranoside and 6-bromo-8-nitroflavone 4'-O-ß-D-(4″-O-methyl)-glucopyranoside. Subsequently, we checked the antimicrobial properties of the aforementioned aglycon flavonoid compounds against pathogenic and probiotic bacteria and yeast. Our studies revealed that flavones have superior inhibitory effects compared to chalcones and flavanones. Notably, 6-chloro-8-nitroflavone showed potent inhibitory activity against pathogenic bacteria. Conversely, flavanones 6-chloro-8-nitroflavanone and 6-bromo-8-nitroflavanone stimulated the growth of probiotic bacteria (Lactobacillus acidophilus and Pediococcus pentosaceus). Our research has shown that the presence of chlorine, bromine, and nitro groups has a significant effect on their antimicrobial properties.


Subject(s)
Biotransformation , Bromine , Chlorine , Flavonoids , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/chemical synthesis , Chlorine/chemistry , Bromine/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Bacteria/drug effects , Bacteria/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry
4.
Int J Mol Sci ; 25(17)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39273666

ABSTRACT

Chalcones, secondary plant metabolites, exhibit various biological properties. The introduction of a chlorine and a glucosyl substituent to the chalcone could enhance its bioactivity and bioavailability. Such compounds can be obtained through a combination of chemical and biotechnological methods. Therefore, 4-chloro-2'-hydroxychalcone and 5'-chloro-2'-hydroxychalcone were obtained by synthesis and then glycosylated in two filamentous fungi strains cultures, i.e., Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5. The main site of the glycosylation of both compounds by I. fumosorosea KCH J2 was C-2' and C-3 when the second strain was utilized. The pharmacokinetics of these compounds were predicted using chemoinformatics tools. Furthermore, antimicrobial activity tests were performed. Compounds significantly inhibited the growth of the bacteria strains Escherichia coli 10536, Staphylococcus aureus DSM 799, and yeast Candida albicans DSM 1386. Nevertheless, the bacterial strain Pseudomonas aeruginosa DSM 939 exhibited significant resistance to their effects. The growth of lactic acid bacteria strain Lactococcus acidophilus KBiMZ 01 bacteria was moderately inhibited, but strains Lactococcus rhamnosus GG and Streptococcus thermophilus KBM-1 were completely inhibited. In summary, chalcones substituted with a chlorine demonstrated greater efficacy in inhibiting the microbial strains under examination compared to 2'-hydroxychalcone, while aglycones and their glycosides exhibited similar effectiveness.


Subject(s)
Anti-Infective Agents , Chalcones , Chlorine , Glycosides , Microbial Sensitivity Tests , Chalcones/chemistry , Chalcones/pharmacology , Glycosides/chemistry , Glycosides/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Chlorine/chemistry , Beauveria
5.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792101

ABSTRACT

Chemokines, also known as chemotactic cytokines, stimulate the migration of immune cells. These molecules play a key role in the pathogenesis of inflammation leading to atherosclerosis, neurodegenerative disorders, rheumatoid arthritis, insulin-resistant diabetes, and cancer. Moreover, they take part in inflammatory bowel disease (IBD). The main objective of our research was to determine the activity of methyl-derivatives of flavanone, namely, 2'-methylflavanone (5B), 3'-methylflavanone (6B), 4'-methylflavanone (7B), and 6-methylflavanone (8B), on the releasing of selected cytokines by RAW264.7 macrophages activated by LPS. We determined the concentration of chemokines belonging to the CC chemokine family, namely, MCP-1, MIP-1ß, RANTES, and eotaxin, using the Bio-Plex Magnetic Luminex Assay and the Bio-PlexTM 200 System. Among the tested compounds, only 5B and 6B had the strongest effect on inhibiting the examined chemokines' release by macrophages. Therefore, 5B and 6B appear to be potentially useful in the prevention of diseases associated with the inflammatory process.


Subject(s)
Chemokine CCL11 , Chemokine CCL2 , Chemokine CCL5 , Flavanones , Macrophages , Animals , Mice , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Flavanones/pharmacology , Flavanones/chemistry , Chemokine CCL11/metabolism , Chemokine CCL2/metabolism , Chemokine CCL5/metabolism , Chemokine CCL4/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects
6.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298456

ABSTRACT

Combining chemical and microbiological methods using entomopathogenic filamentous fungi makes obtaining flavonoid glycosides possible. In the presented study, biotransformations were carried out in cultures of Beauveria bassiana KCH J1.5, Isaria fumosorosea KCH J2, and Isaria farinosa KCH J2.6 strains on six flavonoid compounds obtained in chemical synthesis. As a result of the biotransformation of 6-methyl-8-nitroflavanone using the strain I. fumosorosea KCH J2, two products were obtained: 6-methyl-8-nitro-2-phenylchromane 4-O-ß-D-(4″-O-methyl)-glucopyranoside and 8-nitroflavan-4-ol 6-methylene-O-ß-D-(4″-O-methyl)-glucopyranoside. 8-Bromo-6-chloroflavanone was transformed by this strain to 8-bromo-6-chloroflavan-4-ol 4'-O-ß-D-(4″-O-methyl)-glucopyranoside. As a result of microbial transformation by I. farinosa KCH J2.6 effectively biotransformed only 8-bromo-6-chloroflavone into 8-bromo-6-chloroflavone 4'-O-ß-D-(4″-O-methyl)-glucopyranoside. B. bassiana KCH J1.5 was able to transform 6-methyl-8-nitroflavone to 6-methyl-8-nitroflavone 4'-O-ß-D-(4″-O-methyl)-glucopyranoside, and 3'-bromo-5'-chloro-2'-hydroxychalcone to 8-bromo-6-chloroflavanone 3'-O-ß-D-(4″-O-methyl)-glucopyranoside. None of the filamentous fungi used transformed 2'-hydroxy-5'-methyl-3'-nitrochalcone effectively. Obtained flavonoid derivatives could be used to fight against antibiotic-resistant bacteria. To the best of our knowledge, all the substrates and products presented in this work are new compounds and are described for the first time.


Subject(s)
Flavonoids , Nitrogen Dioxide , Flavonoids/chemistry , Fungi/metabolism , Glycosides/metabolism , Biotransformation
7.
Molecules ; 28(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38067567

ABSTRACT

Inflammation plays an important role in the immune defense against injury and infection agents. However, the inflammatory chronic process may lead to neurodegenerative diseases, atherosclerosis, inflammatory bowel diseases, or cancer. Flavanones present in citrus fruits exhibit biological activities, including anti-oxidative and anti-inflammatory properties. The beneficial effects of flavanones have been found based on in vitro cell cultures and animal studies. A suitable in vitro model for studying the inflammatory process are macrophages (RAW264.7 cell line) because, after stimulation using lipopolysaccharide (LPS), they release inflammatory cytokines involved in the immune response. We determined the nitrite concentration in the macrophage cell culture and detected ROS using chemiluminescence. Additionally, we measured the production of selected cytokines using the Bio-Plex Magnetic Luminex Assay and the Bio-PlexTM 200 System. For the first time, we have shown that methyl derivatives of flavanone inhibit NO and chemiluminescence generated via LPS-stimulated macrophages. Moreover, the tested compounds at 1-20 µM dose-dependently modulate proinflammatory cytokine production (IL-1ß, IL-6, IL-12p40, IL-12p70, and TNF-α) in stimulated RAW264.7 cells. The 2'-methylflavanone (5B) and the 3'-methylflavanone (6B) possess the strongest anti-inflammatory activity among all the tested flavanone derivatives. These compounds reduce the concentration of IL-6, IL-12p40, and IL12p70 compared to the core flavanone structure. Moreover, 2'-methylflavanone reduces TNF-α, and 3'-methylflavanone reduces IL-1ß secreted by RAW264.7 cells.


Subject(s)
Flavanones , Tumor Necrosis Factor-alpha , Animals , Tumor Necrosis Factor-alpha/metabolism , Interleukin-12 Subunit p40 , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Flavanones/pharmacology , Flavanones/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1beta/metabolism , Nitric Oxide/metabolism
8.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628179

ABSTRACT

Flavonoid compounds exhibit numerous biological activities and significantly impact human health. The presence of methyl or glucosyl moieties attached to the flavonoid core remarkably modifies their physicochemical properties and improves intestinal absorption. Combined chemical and biotechnological methods can be applied to obtain such derivatives. In the presented study, 4'-methylflavanone was synthesized and biotransformed in the cultures of three strains of entomopathogenic filamentous fungi, i.e., Isaria fumosorosea KCH J2, Beauveria bassiana KCH J1.5, and Isaria farinosa KCH J2.1. The microbial transformation products in the culture of I. fumosorosea KCH J2, flavanone 4'-methylene-O-ß-D-(4″-O-methyl)-glucopyranoside, 2-phenyl-(4'-hydroxymethyl)-4-hydroxychromane, and flavanone 4'-carboxylic acid were obtained. Biotransformation of 4'-methylflavanone in the culture of B. bassiana KCH J1.5 resulted in the formation of one main product, i.e., flavanone 4'-methylene-O-ß-D-(4″-O-methyl)-glucopyranoside. In the case of I. farinosa KCH J2.6 as a biocatalyst, three products, i.e., flavanone 4'-methylene-O-ß-D-(4″-O-methyl)-glucopyranoside, flavanone 4'-carboxylic acid, and 4'-hydroxymethylflavanone 4-O-ß-D-(4″-O-methyl)-glucopyranoside were obtained. The Swiss-ADME online simulations confirmed the increase in water solubility of 4'-methylflavanone glycosides and analyses performed using the Way2Drug Pass Online prediction tool indicated that flavanone 4'-methylene-O-ß-D-(4″-O-methyl)-glucopyranoside and 4'-hydroxymethylflavanone 4-O-ß-D-(4″-O-methyl)-glucopyranoside, which had not been previously reported in the literature, are promising anticarcinogenic, antimicrobial, and hepatoprotective agents.


Subject(s)
Anti-Infective Agents , Flavanones , Anti-Bacterial Agents , Biotransformation , Carboxylic Acids , Flavanones/pharmacology , Flavonoids/chemistry , Glycosides/chemistry , Glycosides/pharmacology , Humans
9.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35628367

ABSTRACT

Flavonoid compounds are secondary plant metabolites with numerous biological activities; they naturally occur mainly in the form of glycosides. The glucosyl moiety attached to the flavonoid core makes them more stable and water-soluble. The methyl derivatives of flavonoids also show increased stability and intestinal absorption. Our study showed that such flavonoids can be obtained by combined chemical and biotechnological methods with entomopathogenic filamentous fungi as glycosylation biocatalysts. In the current paper, two flavonoids, i.e., 2'-hydroxy-4-methylchalcone and 4'-methylflavone, have been synthesized and biotransformed in the cultures of two strains of entomopathogenic filamentous fungi Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5. Biotransformation of 2'-hydroxy-4-methylchalcone resulted in the formation of two dihydrochalcone glucopyranoside derivatives in the culture of I. fumosorosea KCH J2 and chalcone glucopyranoside derivative in the case of B. bassiana KCH J1.5. 4'-Methylflavone was transformed in the culture of I. fumosorosea KCH J2 into four products, i.e., 4'-hydroxymethylflavone, flavone 4'-methylene-O-ß-d-(4″-O-methyl)-glucopyranoside, flavone 4'-carboxylic acid, and 4'-methylflavone 3-O-ß-d-(4″-O-methyl)-glucopyranoside. 4'-Methylflavone was not efficiently biotransformed in the culture of B. bassiana KCH J1.5. The computer-aided simulations based on the chemical structures of the obtained compounds showed their improved physicochemical properties and antimicrobial, anticarcinogenic, hepatoprotective, and cardioprotective potential.


Subject(s)
Flavones , Biotransformation , Flavones/metabolism , Flavonoids/chemistry , Glycosides , Glycosylation
10.
Molecules ; 27(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35744806

ABSTRACT

This research aimed to select yeast strains capable of the biotransformation of selected 2'-hydroxybromochalcones. Small-scale biotransformations were carried out using four substrates obtained by chemical synthesis (2'-hydroxy-2″-bromochalcone, 2'-hydroxy-3″-bromochalcone, 2'-hydroxy-4″-bromochalcone and 2'-hydroxy-5'-bromochalcone) and eight strains of non-conventional yeasts. Screening allowed for the determination of the substrate specificity of selected microorganisms and the selection of biocatalysts that carried out the hydrogenation of tested compounds in the most effective way. It was found that the position of the bromine atom has a crucial influence on the degree of substrate conversion by the tested yeast strains. As a result of the biotransformation of the 2'-hydroxybromochalcones, the corresponding 2'-hydroxybromodihydrochalcones were obtained. The products obtained belong to the group of compounds with high potential as precursors of sweet substances.


Subject(s)
Bromine , Saccharomyces cerevisiae , Biotransformation , Hydrogenation , Substrate Specificity
11.
Int J Mol Sci ; 22(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34502526

ABSTRACT

Methylated flavonoids are promising pharmaceutical agents due to their improved metabolic stability and increased activity compared to unmethylated forms. The biotransformation in cultures of entomopathogenic filamentous fungi is a valuable method to obtain glycosylated flavones and flavanones with increased aqueous solubility and bioavailability. In the present study, we combined chemical synthesis and biotransformation to obtain methylated and glycosylated flavonoid derivatives. In the first step, we synthesized 2'-methylflavanone and 2'-methylflavone. Afterwards, both compounds were biotransformed in the cultures of two strains of entomopathogenic filamentous fungi Beauveria bassiana KCH J1.5 and Isaria fumosorosea KCH J2. We determined the structures of biotransformation products based on NMR spectroscopy. Biotransformations of 2'-methyflavanone in the culture of B. bassiana KCH J1.5 resulted in three glycosylated flavanones: 2'-methylflavanone 6-O-ß-d-(4″-O-methyl)-glucopyranoside, 3'-hydroxy-2'-methylflavanone 6-O-ß-d-(4″-O-methyl)-glucopyranoside, and 2-(2'-methylphenyl)-chromane 4-O-ß-d-(4″-O-methyl)-glucopyranoside, whereas in the culture of I. fumosorosea KCH J2, two other products were obtained: 2'-methylflavanone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside and 2-methylbenzoic acid 4-O-ß-d-(4'-O-methyl)-glucopyranoside. 2'-Methylflavone was effectively biotransformed only by I. fumosorosea KCH J2 into three derivatives: 2'-methylflavone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside, 2'-methylflavone 4'-O-ß-d-(4″-O-methyl)-glucopyranoside, and 2'-methylflavone 5'-O-ß-d-(4″-O-methyl)-glucopyranoside. All obtained glycosylated flavonoids have not been described in the literature until now and need further research on their biological activity and pharmacological efficacy as potential drugs.


Subject(s)
Beauveria/metabolism , Cordyceps/metabolism , Flavanones/metabolism , Flavones/metabolism , Biotransformation
12.
Int J Mol Sci ; 22(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34502528

ABSTRACT

Flavonoids, including chalcones, are more stable and bioavailable in the form of glycosylated and methylated derivatives. The combined chemical and biotechnological methods can be applied to obtain such compounds. In the present study, 2'-hydroxy-2-methylchalcone was synthesized and biotransformed in the cultures of entomopathogenic filamentous fungi Beauveria bassiana KCH J1.5, Isaria fumosorosea KCH J2 and Isaria farinosa KCH J2.6, which have been known for their extensive enzymatic system and ability to perform glycosylation of flavonoids. As a result, five new glycosylated dihydrochalcones were obtained. Biotransformation of 2'-hydroxy-2-methylchalcone by B. bassiana KCH J1.5 resulted in four glycosylated dihydrochalcones: 2'-hydroxy-2-methyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside, 2',3-dihydroxy-2-methyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside, 2'-hydroxy-2-hydroxymethyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside, and 2',4-dihydroxy-2-methyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside. In the culture of I. fumosorosea KCH J2 only one product was formed-3-hydroxy-2-methyldihydrochalcone 2'-O-ß-d-(4″-O-methyl)-glucopyranoside. Biotransformation performed by I. farinosa KCH J2.6 resulted in the formation of two products: 2'-hydroxy-2-methyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside and 2',3-dihydroxy-2-methyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside. The structures of all obtained products were established based on the NMR spectroscopy. All products mentioned above may be used in further studies as potentially bioactive compounds with improved stability and bioavailability. These compounds can be considered as flavor enhancers and potential sweeteners.


Subject(s)
Beauveria/metabolism , Chalcones/biosynthesis , Cordyceps/metabolism , Biotransformation , Glycosylation
13.
Microb Cell Fact ; 19(1): 37, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32066453

ABSTRACT

BACKGROUND: Steroid compounds with a 6,19-oxirane bridge possess interesting biological activities including anticonvulsant and analgesic properties, bacteriostatic activity against Gram-positive bacteria and selective anti-glucocorticoid action, while lacking mineralocorticoid and progestagen activity. RESULTS: The study aimed to obtain new derivatives of 3ß-acetyloxy-5α-chloro-6,19-oxidoandrostan-17-one by microbial transformation. Twelve filamentous fungal strains were used as catalysts, including entomopathogenic strains with specific activity in the transformation of steroid compounds. All selected strains were characterised by high biotransformation capacity for steroid compounds. However, high substrate conversions were obtained in the cultures of 8 strains: Beauveria bassiana KCh BBT, Beauveria caledonica KCh J3.4, Penicillium commune KCh W7, Penicillium chrysogenum KCh S4, Mucor hiemalis KCh W2, Fusarium acuminatum KCh S1, Trichoderma atroviride KCh TRW and Isaria farinosa KCh KW1.1. Based on gas chromatography (GC) and nuclear magnetic resonance (NMR) analyses, it was found that almost all strains hydrolysed the ester bond of the acetyl group. The strain M. hiemalis KCh W2 reduced the carbonyl group additionally. From the P. commune KCh W7 and P. chrysogenum KCh S4 strain cultures a product of D-ring Baeyer-Villiger oxidation was isolated, whereas from the culture of B. bassiana KCh BBT a product of hydroxylation at the 11α position and oxidation of the D ring was obtained. Three 11α-hydroxy derivatives were obtained in the culture of I. farinosa KCh KW1.1: 3ß,11α-dihydroxy-5α-chloro-6,19-oxidoandrostan-17-one, 3ß,11α,19-trihydroxy-5α-chloro-6,19-oxidoandrostan-17-one and 3ß,11α-dihydroxy-5α-chloro-6,19-oxidoandrostan-17,19-dione. They are a result of consecutive reactions of hydrolysis of the acetyl group at C-3, 11α- hydroxylation, then hydroxylation at C-19 and its further oxidation to lactone. CONCLUSIONS: As a result of the biotransformations, seven steroid derivatives, not previously described in the literature, were obtained: 3ß-hydroxy-5α-chloro-6,19-oxidoandrostan-17-one, 3ß,17α-dihydroxy-5α-chloro-6,19-oxidoandrostane, 3ß-hydroxy-5α-chloro-17α-oxa-D-homo-6,19-oxidoandrostan-17-one, 3ß,11α-dihydroxy-5α-chloro-17α-oxa-D-homo-6,19-oxidoandrostan-17-one and the three above-mentioned 11α-hydroxy derivatives. This study will allow a better understanding and characterisation of the catalytic abilities of individual microorganisms, which is crucial for more accurate planning of experiments and achieving more predictable results.


Subject(s)
Androstanols/metabolism , Biotransformation , Fungi/metabolism , Industrial Microbiology
14.
Int J Mol Sci ; 21(17)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854359

ABSTRACT

The synthesis and biotransformation of five flavones containing methoxy substituents in the B ring: 2'-, 3'-, 4'-methoxyflavones, 2',5'-dimethoxyflavone and 3',4',5'-trimethoxyflavone are described. Strains of entomopathogenic filamentous fungi were used as biocatalysts. Five strains of the species Beauveria bassiana (KCh J1.5, J2.1, J3.2, J1, BBT), two of the species Beauveria caledonica (KCh J3.3, J3.4), one of Isaria fumosorosea (KCh J2) and one of Isaria farinosa (KCh KW 1.1) were investigated. Both the number and the place of attachment of the methoxy groups in the flavonoid structure influenced the biotransformation rate and the amount of nascent products. Based on the structures of products and semi-products, it can be concluded that their formation is the result of a cascading process. As a result of enzymes produced in the cells of the tested strains, the test compounds undergo progressive demethylation and/or hydroxylation and 4-O-methylglucosylation. Thirteen novel flavonoid 4-O-methylglucosides and five hydroxy flavones were isolated and identified.


Subject(s)
Beauveria/growth & development , Cordyceps/growth & development , Flavones/chemistry , Flavones/metabolism , Beauveria/metabolism , Biotransformation , Cordyceps/metabolism , Hydroxylation , Molecular Structure
15.
Molecules ; 25(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297500

ABSTRACT

In vitro plant cultures are gaining in industrial importance, especially as biocatalysts and as sources of secondary metabolites used in pharmacy. The idea that guided us in our research was to evaluate the biocatalytic potential of newly obtained callus tissue towards flavonoid compounds. In this publication, we describe new ways of using callus cultures in the biotransformations. In the first method, the callus cultures grown on a solid medium are transferred to the water, the reaction medium into which the substrate is introduced. In the second method, biotransformation is carried out on a solid medium by growing callus cultures. In the course of the research, we have shown that the callus obtained from Phaseolus coccineus and Glycine max is capable of converting flavanone, 5-methoxyflavanone and 6-methoxyflavanone into the corresponding flavones.


Subject(s)
Biotransformation , Flavanones/chemistry , Flavones/chemistry , Glycine max/chemistry , Phaseolus/chemistry , Biocatalysis , Hydrogen-Ion Concentration
16.
Molecules ; 24(17)2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31480751

ABSTRACT

Biotransformations were performed on eight selected yeast strains, all of which were able to selectively hydrogenate the chalcone derivatives 3-(2"-furyl)- (1) and 3-(2"-thienyl)-1-(2'-hydroxyphenyl)-prop-2-en-1-one (3) into 3-(2"-furyl)- (2) and 3-(2"-thienyl)-1-(2'-hydroxyphenyl)-propan-1-one (4) respectively. The highest efficiency of hydrogenation of the double bond in the substrate 1 was observed in the cultures of Saccharomyces cerevisiae KCh 464 and Yarrowia lipolytica KCh 71 strains. The substrate was converted into the product with > 99% conversion just in six hours after biotransformation started. The compound containing the sulfur atom in its structure was most effectively transformed by the Yarrowia lipolytica KCh 71 culture strain (conversion > 99%, obtained after three hours of substrate incubation). Also, we observed that, different strains of tested yeasts are able to carry out the bioreduction of the used substrate with different yields, depending on the presence of induced and constitutive ene reductases in their cells. The biggest advantage of this process is the efficient production of one product, practically without the formation of side products.


Subject(s)
Thiophenes/metabolism , Yeasts/metabolism , Biotransformation , Cells, Cultured , Chalcones/metabolism , Hydrogenation , Substrate Specificity , Thiophenes/chemical synthesis , Thiophenes/chemistry
17.
Molecules ; 24(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744042

ABSTRACT

Six γ-oxa-ε-lactones, 4-phenyl-3,4-dihydro-2H-1,5-benzodioxepin-2-one (5a) and its five derivatives with methoxy groups in different positions of A and B rings (5b-f), were synthesized from corresponding flavanones. Three of the obtained lactones (5b,c,f) have not been previously described in the literature. Structures of all synthesized compounds were confirmed by complete spectroscopic analysis with the assignments of signals on 1H and 13C-NMR spectra to the corresponding atoms. In most cases, lactones 5a-f exerted an inhibitory effect on the growth of selected pathogenic bacteria (Escherichia coli, Bacillus subtilis, and Staphylococcus aureus), filamentous fungi (Fusarium graminearum, Aspergillus niger, and Alternaria sp.), and yeast (Candida albicans). The broadest spectrum of activity was observed for unsubstituted lactone 5a, which was particularly active against filamentous fungi and yeast. Lactones with methoxy groups in the 3' (5c) and 4' (5d) position of B ring were more active towards bacteria whereas lactone substituted in the 7 position of the A ring (5e) exhibited higher antifungal activity. In most cases, the introduction of lactone function increased the activity of the compound compared to its flavonoid precursors, chalcones 3a-e, and flavanones 4a-f.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Chemistry Techniques, Synthetic , Flavanones/chemistry , Lactones/chemical synthesis , Lactones/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Lactones/chemistry , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
18.
Microb Cell Fact ; 17(1): 71, 2018 May 12.
Article in English | MEDLINE | ID: mdl-29753319

ABSTRACT

BACKGROUND: Steroid compounds are very interesting substrates for biotransformation due to their high biological activity and a high number of inactivated carbons which make chemical modification difficult. Microbial transformation can involve reactions which are complicated and uneconomical in chemical synthesis, and searching for a new effective biocatalyst is necessary. The best known entomopathogenic species used in steroid modification is Beauveria bassiana. In this study we tested the ability of Isaria farinosa, another entomopathogenic species, to transform several steroids. RESULTS: Twelve strains of the entomopathogenic filamentous fungus Isaria farinosa, collected in abandoned mines located in the area of the Lower Silesian Voivodeship, Poland, from insects' bodies covered by fungus, were used as a biocatalyst. All the tested strains effectively transformed dehydroepiandrosterone (DHEA). We observed 7α- and 7ß-hydroxy derivatives as well as changes in the percentage composition of the emerging products. Due to the similar metabolism of DHEA in all tested strains, one of them was selected for further investigation. In the culture of the selected strain, Isaria farinosa KCh KW1.1, transformations of androstenediol, androstenedione, adrenosterone, 17α-methyltestosterone, 17ß-hydroxyandrost-1,4,6-triene-3-one and progesterone were performed. All the substrates were hydroxylated with high yield and stereoselectivity. We obtained 6ß-hydroxyandrost-4-ene-3,11,17-trione, 15α,17ß-dihydroxy-6ß,7ß-epoxyandrost-1,4-diene-3-one and 6ß,11α-dihydroxyprogesterone. There is no evidence of either earlier microbial transformation of 17ß-hydroxyandrost-1,4,6-triene-3-one or new epoxy derivatives. CONCLUSIONS: Isaria farinosa has a broad spectrum of highly effective steroid hydroxylases. The obtained 7-hydroxydehydroepiandrosterone has proven high biological activity and can be used in Alzheimer's disease and as a key intermediate in the synthesis of aldosterone antagonists. Transformation of progesterone leads to high yield of 6ß,11α-dihydroxyprogesterone and it is worth further study.


Subject(s)
Biotransformation/physiology , Dehydroepiandrosterone/metabolism , Fungal Proteins/chemistry , Progesterone/metabolism , Steroids/metabolism
19.
Bioorg Chem ; 78: 178-184, 2018 08.
Article in English | MEDLINE | ID: mdl-29574302

ABSTRACT

In this work, 17α-methyltestosterone was effectively hydroxylated by Absidia coerulea KCh 93, Syncephalastrum racemosum KCh 105 and Chaetomium sp. KCh 6651. A. coerulea KCh 93 afforded 6ß-, 12ß-, 7α-, 11α-, 15α-hydroxy derivatives with 44%, 29%, 6%, 5% and 9% yields, respectively. S. racemosum KCh 105 afforded 7α-, 15α- and 11α-hydroxy derivatives with yields of 45%, 19% and 17%, respectively. Chaetomium sp. KCh 6651 afforded 15α-, 11α-, 7α-, 6ß-, 9α-, 14α-hydroxy and 6ß,14α-dihydroxy derivatives with yields of 31%, 20%, 16%, 7%, 5%, 7% and 4%, respectively. 14α-Hydroxy and 6ß,14α-dihydroxy derivatives were determined as new compounds. Effect of various sources of nitrogen and carbon in the media on biotransformations were tested, however did not affect the degree of substrate conversion or the composition of the products formed. The addition of α- or ß-naphthoflavones inhibited 17α-methyltestosterone hydroxylation but did not change the percentage composition of the resulting products.


Subject(s)
Benzoflavones/pharmacology , Enzyme Inhibitors/pharmacology , Methyltestosterone/antagonists & inhibitors , Mixed Function Oxygenases/antagonists & inhibitors , beta-Naphthoflavone/pharmacology , Absidia/enzymology , Benzoflavones/chemical synthesis , Benzoflavones/chemistry , Chaetomium/enzymology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Methyltestosterone/chemistry , Methyltestosterone/metabolism , Mixed Function Oxygenases/metabolism , Molecular Structure , Mucorales/enzymology , Structure-Activity Relationship , beta-Naphthoflavone/chemical synthesis , beta-Naphthoflavone/chemistry
20.
Molecules ; 23(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304815

ABSTRACT

Flavonoids are widely described plant secondary metabolites with high and diverse pro-health properties. In nature, they occur mostly in the form of glycosides. Our research showed that an excellent way to obtain the sugar derivatives of flavonoids is through biotransformations with the use of entomopathogenic filamentous fungi as biocatalysts. In the current paper, we described the biotransformations of five methoxylated flavonoid compounds (2'-methoxyflavanone, 3'-methoxyflavanone, 4'-methoxyflavanone, 6-methoxyflavanone, and 6-methoxyflavone) in cultures of Isaria fumosorosea KCH J2. As a result, we obtained twelve new flavonoid 4-O-methylglucopyranosides. The products were purified with methods that enabled the reduction of the consumption of organic solvents (preparative TLC and flash chromatography). The structures of the products were confirmed with spectroscopic methods (NMR: ¹H, 13C, HSQC, HMBC, COSY). The compounds obtained by us expand the library of available flavonoid derivatives and can be used in biological research.


Subject(s)
Cordyceps/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Biotransformation , Glycosylation , Magnetic Resonance Spectroscopy , Methylation , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL