Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Proc Natl Acad Sci U S A ; 115(41): 10363-10368, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30254161

ABSTRACT

The biogenesis of double-membrane vesicles called autophagosomes, which sequester and transport intracellular material for degradation in lysosomes or vacuoles, is a central event in autophagy. This process requires a unique set of factors called autophagy-related (Atg) proteins. The Atg proteins assemble to organize the preautophagosomal structure (PAS), at which a cup-shaped membrane, the isolation membrane (or phagophore), forms and expands to become the autophagosome. The molecular mechanism of autophagosome biogenesis remains poorly understood. Previous studies have shown that Atg2 forms a complex with the phosphatidylinositol 3-phosphate (PI3P)-binding protein Atg18 and localizes to the PAS to initiate autophagosome biogenesis; however, the molecular function of Atg2 remains unknown. In this study, we show that Atg2 has two membrane-binding domains in the N- and C-terminal regions and acts as a membrane tether during autophagosome formation in the budding yeast Saccharomyces cerevisiae An amphipathic helix in the C-terminal region binds to membranes and facilitates Atg18 binding to PI3P to target the Atg2-Atg18 complex to the PAS. The N-terminal region of Atg2 is also involved in the membrane binding of this protein but is dispensable for the PAS targeting of the Atg2-Atg18 complex. Our data suggest that this region associates with the endoplasmic reticulum (ER) and is responsible for the formation of the isolation membrane at the PAS. Based on these results, we propose that the Atg2-Atg18 complex tethers the PAS to the ER to initiate membrane expansion during autophagosome formation.


Subject(s)
Autophagosomes/metabolism , Autophagy-Related Proteins/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Autophagosomes/chemistry , Autophagy-Related Proteins/genetics , Intracellular Membranes/metabolism , Membrane Proteins/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Domains , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
2.
Cell Struct Funct ; 45(1): 1-8, 2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31787665

ABSTRACT

The polytopic plasma membrane protein Rim21 senses both the elevation of ambient pH and alterations in plasma membrane lipid asymmetry in the Rim101 pathway in budding yeast. Rim21 is known to undergo N-glycosylation, but the site and function of the glycosylation modification is not known. Using a systematic mutation analysis, we found that Rim21 is N-glycosylated at an unconventional motif located in the N-terminal extracellular region. The Rim21 mutant protein that failed to receive N-glycosylation showed prolonged protein lifetime compared to that of WT Rim21 protein. Although both the WT and mutant Rim21 localized to the plasma membrane, they exhibited different biochemical fractionation profiles. The mutant Rim21, but not WT Rim21, was mainly fractionated into the heavy membrane fraction. Further, compared to WT Rim21, mutant Rim21 was more easily solubilized with digitonin but was conversely more resistant to solubilization with Triton X-100. Despite these different biochemical properties from WT Rim21, mutant Rim21 protein could still activate the Rim101 pathway in response to external alkalization. Collectively, N-glycosylation of Rim21 is not indispensable for its activity as a sensor protein, but modulates the residence of Rim21 protein to some microdomains within the plasma membrane with distinct lipid conditions, thereby affecting its turnover.Key words: plasma membrane, lipid asymmetry, N-linked glycosylation, microdomain, Saccharomyces cerevisiae.


Subject(s)
Cell Membrane/metabolism , Membrane Proteins/metabolism , Receptors, Cell Surface/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Membrane/genetics , Glycosylation , Saccharomyces cerevisiae/metabolism
3.
Nucleic Acids Res ; 41(6): 3713-22, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23396448

ABSTRACT

The bacterial homologues of ObgH1 and Mtg1, ObgE and RbgA, respectively, have been suggested to be involved in the assembly of large ribosomal subunits. We sought to elucidate the functions of ObgH1 and Mtg1 in ribosome biogenesis in human mitochondria. ObgH1 and Mtg1 are localized in mitochondria in association with the inner membrane, and are exposed on the matrix side. Mtg1 and ObgH1 specifically associate with the large subunit of the mitochondrial ribosome in GTP-dependent manner. The large ribosomal subunit stimulated the GTPase activity of Mtg1, whereas only the intrinsic GTPase activity was detectable with ObgH1. The knockdown of Mtg1 decreased the overall mitochondrial translation activity, and caused defects in the formation of respiratory complexes. On the other hand, the depletion of ObgH1 led to the specific activation of the translation of subunits of Complex V, and disrupted its proper formation. Our results suggested that Mtg1 and ObgH1 function with the large subunit of the mitochondrial ribosome, and are also involved in both the translation and assembly of respiratory complexes. The fine coordination of ribosome assembly, translation and respiratory complex formation in mammalian mitochondria is affirmed.


Subject(s)
GTP Phosphohydrolases/metabolism , Mitochondria/enzymology , Mitochondria/genetics , Mitochondrial Proteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , Protein Biosynthesis , Ribosome Subunits, Large, Eukaryotic/metabolism , Electron Transport , GTP Phosphohydrolases/physiology , HeLa Cells , Humans , Mitochondrial Proteins/physiology , Monomeric GTP-Binding Proteins/physiology
4.
J Biochem ; 175(2): 155-165, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-37983716

ABSTRACT

Autophagy is a highly conserved intracellular degradation mechanism. The most distinctive feature of autophagy is the formation of double-membrane structures called autophagosomes, which compartmentalize portions of the cytoplasm. The outer membrane of the autophagosome fuses with the vacuolar/lysosomal membrane, leading to the degradation of the contents of the autophagosome. Approximately 30 years have passed since the identification of autophagy-related (ATG) genes and Atg proteins essential for autophagosome formation, and the primary functions of these Atg proteins have been elucidated. These achievements have significantly advanced our understanding of the mechanism of autophagosome formation. This article summarizes our current knowledge on how the autophagosome precursor is generated, and how the membrane expands and seals to complete the autophagosome.


Subject(s)
Autophagosomes , Autophagy , Autophagosomes/metabolism , Vacuoles/metabolism , Lysosomes/metabolism , Lipids
5.
Nat Struct Mol Biol ; 31(1): 170-178, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057553

ABSTRACT

Atg8, a ubiquitin-like protein, is conjugated with phosphatidylethanolamine (PE) via Atg7 (E1), Atg3 (E2) and Atg12-Atg5-Atg16 (E3) enzymatic cascade and mediates autophagy. However, its molecular roles in autophagosome formation are still unclear. Here we show that Saccharomyces cerevisiae Atg8-PE and E1-E2-E3 enzymes together construct a stable, mobile membrane scaffold. The complete scaffold formation induces an in-bud in prolate-shaped giant liposomes, transforming their morphology into one reminiscent of isolation membranes before sealing. In addition to their enzymatic roles in Atg8 lipidation, all three proteins contribute nonenzymatically to membrane scaffolding and shaping. Nuclear magnetic resonance analyses revealed that Atg8, E1, E2 and E3 together form an interaction web through multivalent weak interactions, where the intrinsically disordered regions in Atg3 play a central role. These data suggest that all six Atg proteins in the Atg8 conjugation machinery control membrane shaping during autophagosome formation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Autophagy-Related Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Membranes/metabolism , Autophagy , Autophagy-Related Protein 8 Family/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Microtubule-Associated Proteins/metabolism
6.
J Cell Biol ; 222(8)2023 08 07.
Article in English | MEDLINE | ID: mdl-37436710

ABSTRACT

In macroautophagy, cellular components are sequestered within autophagosomes and transported to lysosomes/vacuoles for degradation. Although phosphatidylinositol 3-kinase complex I (PI3KCI) plays a pivotal role in the regulation of autophagosome biogenesis, little is known about how this complex localizes to the pre-autophagosomal structure (PAS). In Saccharomyces cerevisiae, PI3KCI is composed of PI3K Vps34 and conserved subunits Vps15, Vps30, Atg14, and Atg38. In this study, we discover that PI3KCI interacts with the vacuolar membrane anchor Vac8, the PAS scaffold Atg1 complex, and the pre-autophagosomal vesicle component Atg9 via the Atg14 C-terminal region, the Atg38 C-terminal region, and the Vps30 BARA domain, respectively. While the Atg14-Vac8 interaction is constitutive, the Atg38-Atg1 complex interaction and the Vps30-Atg9 interaction are enhanced upon macroautophagy induction depending on Atg1 kinase activity. These interactions cooperate to target PI3KCI to the PAS. These findings provide a molecular basis for PAS targeting of PI3KCI during autophagosome biogenesis.


Subject(s)
Autophagosomes , Autophagy-Related Proteins , Membrane Proteins , Saccharomyces cerevisiae Proteins , Vesicular Transport Proteins , Autophagosomes/metabolism , Autophagy , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
7.
Nat Commun ; 14(1): 5815, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726301

ABSTRACT

In autophagy, a membrane cisterna called the isolation membrane expands, bends, becomes spherical, and closes to sequester cytoplasmic constituents into the resulting double-membrane vesicle autophagosome for lysosomal/vacuolar degradation. Here, we discover a mechanism that allows the isolation membrane to expand with a large opening to ensure non-selective cytoplasm sequestration within the autophagosome. A sorting nexin complex that localizes to the opening edge of the isolation membrane plays a critical role in this process. Without the complex, the isolation membrane expands with a small opening that prevents the entry of particles larger than about 25 nm, including ribosomes and proteasomes, although autophagosomes of nearly normal size eventually form. This study sheds light on membrane morphogenesis during autophagosome formation and selectivity in autophagic degradation.


Subject(s)
Autophagosomes , Autophagy , Cytosol , Macroautophagy , Ribosomes
8.
J Cell Biol ; 221(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35061008

ABSTRACT

In selective autophagy of the nucleus (hereafter nucleophagy), nucleus-derived double-membrane vesicles (NDVs) are formed, sequestered within autophagosomes, and delivered to lysosomes or vacuoles for degradation. In Saccharomyces cerevisiae, the nuclear envelope (NE) protein Atg39 acts as a nucleophagy receptor, which interacts with Atg8 to target NDVs to the forming autophagosomal membranes. In this study, we revealed that Atg39 is anchored to the outer nuclear membrane via its transmembrane domain and also associated with the inner nuclear membrane via membrane-binding amphipathic helices (APHs) in its perinuclear space region, thereby linking these membranes. We also revealed that autophagosome formation-coupled Atg39 crowding causes the NE to protrude toward the cytoplasm, and the tips of the protrusions are pinched off to generate NDVs. The APHs of Atg39 are crucial for Atg39 crowding in the NE and subsequent NE protrusion. These findings suggest that the nucleophagy receptor Atg39 plays pivotal roles in NE deformation during the generation of NDVs to be degraded by nucleophagy.


Subject(s)
Autophagy-Related Proteins/metabolism , Autophagy , Nuclear Envelope/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromosomes, Fungal/metabolism
9.
FEMS Yeast Res ; 10(6): 687-98, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20550582

ABSTRACT

Saccharomyces cerevisiaeSigma1278b has the MPR1 gene encoding the N-acetyltransferase Mpr1 that acetylates the proline metabolism intermediate Delta(1)-pyrroline-5-carboxylate (P5C)/glutamate-gamma-semialdehyde (GSA) in vitro. In addition, Mpr1 protects cells from various oxidative stresses by regulating the levels of intracellular reactive oxygen species (ROS). However, the relationship between P5C/GSA acetylation and antioxidative mechanism involving Mpr1 remains unclear. Here, we report the synthesis of oxidative stress-induced arginine via P5C/GSA acetylation catalyzed by Mpr1. Gene disruption analysis revealed that Mpr1 converts P5C/GSA into N-acetyl-GSA for arginine synthesis in the mitochondria, indicating that Mpr1 mediates the proline and arginine metabolic pathways. More importantly, Mpr1 regulate ROS generation by acetylating toxic P5C/GSA. Under oxidative stress conditions, the transcription of PUT1 encoding the proline oxidase Put1 and MPR1 was strongly induced, and consequently, the arginine content was significantly increased. We also found that two deletion mutants (Deltampr1/2 and Deltaput1) were more sensitive to high-temperature stress than the wild-type strain, but that direct treatment with arginine restored the cell viability of these mutants. These results suggest that Mpr1-dependent arginine synthesis confers stress tolerance. We propose an antioxidative mechanism that is involved in stress-induced arginine synthesis requiring Mpr1 and Put1.


Subject(s)
Acetyltransferases/metabolism , Arginine/biosynthesis , Oxidative Stress , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/physiology , Stress, Physiological , Acetylation , Acetyltransferases/genetics , Gene Knockout Techniques , Glutamates/metabolism , Metabolic Networks and Pathways , Microbial Viability , Models, Biological , Mutagenesis, Insertional , Proline Oxidase/metabolism , Pyrroles/metabolism , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Temperature
10.
J Cell Biol ; 219(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32453403

ABSTRACT

The mechanisms underlying turnover of the nuclear pore complex (NPC) and the component nucleoporins (Nups) are still poorly understood. In this study, we found that the budding yeast Saccharomyces cerevisiae triggers NPC degradation by autophagy upon the inactivation of Tor kinase complex 1. This degradation largely depends on the selective autophagy-specific factor Atg11 and the autophagy receptor-binding ability of Atg8, suggesting that the NPC is degraded via receptor-dependent selective autophagy. Immunoelectron microscopy revealed that NPCs embedded in nuclear envelope-derived double-membrane vesicles are sequestered within autophagosomes. At least two pathways are involved in NPC degradation: Atg39-dependent nucleophagy (selective autophagy of the nucleus) and a pathway involving an unknown receptor. In addition, we found the interaction between Nup159 and Atg8 via the Atg8-family interacting motif is important for degradation of this nucleoporin not assembled into the NPC. Thus, this study provides the first evidence for autophagic degradation of the NPC and Nups, which we term "NPC-phagy" and "nucleoporinophagy."


Subject(s)
Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Proteins/genetics , Autophagy/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Vesicular Transport Proteins/genetics , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Gene Expression Regulation, Fungal , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Microscopy, Immunoelectron , Nuclear Pore/drug effects , Nuclear Pore/ultrastructure , Nuclear Pore Complex Proteins/metabolism , Protein Binding , Protein Kinase Inhibitors/pharmacology , Proteolysis/drug effects , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Sirolimus/pharmacology , Vesicular Transport Proteins/metabolism
12.
Nat Struct Mol Biol ; 27(12): 1185-1193, 2020 12.
Article in English | MEDLINE | ID: mdl-33106658

ABSTRACT

The molecular function of Atg9, the sole transmembrane protein in the autophagosome-forming machinery, remains unknown. Atg9 colocalizes with Atg2 at the expanding edge of the isolation membrane (IM), where Atg2 receives phospholipids from the endoplasmic reticulum (ER). Here we report that yeast and human Atg9 are lipid scramblases that translocate phospholipids between outer and inner leaflets of liposomes in vitro. Cryo-EM of fission yeast Atg9 reveals a homotrimer, with two connected pores forming a path between the two membrane leaflets: one pore, located at a protomer, opens laterally to the cytoplasmic leaflet; the other, at the trimer center, traverses the membrane vertically. Mutation of residues lining the pores impaired IM expansion and autophagy activity in yeast and abolished Atg9's ability to transport phospholipids between liposome leaflets. These results suggest that phospholipids delivered by Atg2 are translocated from the cytoplasmic to the luminal leaflet by Atg9, thereby driving autophagosomal membrane expansion.


Subject(s)
Autophagosomes/chemistry , Autophagy-Related Proteins/chemistry , Membrane Proteins/chemistry , Phospholipids/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Vesicular Transport Proteins/chemistry , Autophagosomes/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Binding Sites , Biological Transport , Cryoelectron Microscopy , Gene Expression , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Phospholipids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Proteolipids/chemistry , Proteolipids/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Red Fluorescent Protein
13.
Biotechnol Bioeng ; 103(2): 341-52, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19170243

ABSTRACT

The budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene, which confers resistance to the proline analogue azetidine-2-carboxylate (AZC). This gene encodes an N-acetyltransferase Mpr1 that detoxifies AZC, and the homologous genes have been found in many yeasts. Recently, we found that Mpr1 protects yeast cells by reducing the intracellular reactive oxygen species (ROS) levels under oxidative stresses, such as heat-shock, freezing, or ethanol treatment. Unlike the known antioxidant enzymes, Mpr1 is thought to acetylate toxic metabolite(s) involved in ROS generation via oxidative events. To improve the enzymatic functions of Mpr1, we applied PCR random mutagenesis to MPR1. The mutagenized plasmid library was introduced into the S. cerevisiae S288C strain lacking MPR1, and we successfully isolated two Mpr1 variants with higher AZC resistance (K63R and F65L/L117V). Interestingly, overexpression of the K63R variant was found to increase cell viability or decrease intracellular ROS levels after exposure to H(2)O(2) or ethanol compared with the wild-type Mpr1. In vitro studies with the recombinant enzymes showed that the catalytic efficiency of the K63R variant for AZC and acetyl-CoA was higher than that of the wild-type Mpr1 and that the F65L mutation greatly enhanced the thermal stability. The mutational analysis and molecular modeling suggest that an alpha-helix containing Lys63 and Phe65 has important roles in the function of Mpr1. In addition, the wild-type and K63R variant Mpr1 reduced intracellular ROS levels under ethanol stress conditions on haploid sake yeast cells. These results suggest that engineering Mpr1 might be useful in breeding oxidative stress-tolerant yeast strains.


Subject(s)
Acetyltransferases/genetics , Acetyltransferases/metabolism , Azetidines/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , Amino Acid Substitution , Enzyme Stability , Gene Dosage , Hydrogen Peroxide/pharmacology , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis , Mutation, Missense , Oxidants/pharmacology , Polymerase Chain Reaction/methods , Protein Structure, Tertiary , Saccharomyces cerevisiae/drug effects
14.
Nat Struct Mol Biol ; 26(4): 281-288, 2019 04.
Article in English | MEDLINE | ID: mdl-30911189

ABSTRACT

A key event in autophagy is autophagosome formation, whereby the newly synthesized isolation membrane (IM) expands to form a complete autophagosome using endomembrane-derived lipids. Atg2 physically links the edge of the expanding IM with the endoplasmic reticulum (ER), a role that is essential for autophagosome formation. However, the molecular function of Atg2 during ER-IM contact remains unclear, as does the mechanism of lipid delivery to the IM. Here we show that the conserved amino-terminal region of Schizosaccharomyces pombe Atg2 includes a lipid-transfer-protein-like hydrophobic cavity that accommodates phospholipid acyl chains. Atg2 bridges highly curved liposomes, thereby facilitating efficient phospholipid transfer in vitro, a function that is inhibited by mutations that impair autophagosome formation in vivo. These results suggest that Atg2 acts as a lipid-transfer protein that supplies phospholipids for autophagosome formation.


Subject(s)
Autophagosomes/metabolism , Endoplasmic Reticulum/metabolism , Schizosaccharomyces/metabolism , Autophagy/physiology , Autophagy-Related Proteins/metabolism , Carrier Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Liposomes/metabolism , Phospholipids/metabolism
15.
Elife ; 82019 02 27.
Article in English | MEDLINE | ID: mdl-30810528

ABSTRACT

In autophagy, Atg proteins organize the pre-autophagosomal structure (PAS) to initiate autophagosome formation. Previous studies in yeast revealed that the autophagy-related E3 complex Atg12-Atg5-Atg16 is recruited to the PAS via Atg16 interaction with Atg21, which binds phosphatidylinositol 3-phosphate (PI3P) produced at the PAS, to stimulate conjugation of the ubiquitin-like protein Atg8 to phosphatidylethanolamine. Here, we discover a novel mechanism for the PAS targeting of Atg12-Atg5-Atg16, which is mediated by the interaction of Atg12 with the Atg1 kinase complex that serves as a scaffold for PAS organization. While autophagy is partially defective without one of these mechanisms, cells lacking both completely lose the PAS localization of Atg12-Atg5-Atg16 and show no autophagic activity. As with the PI3P-dependent mechanism, Atg12-Atg5-Atg16 recruited via the Atg12-dependent mechanism stimulates Atg8 lipidation, but also has the specific function of facilitating PAS scaffold assembly. Thus, this study significantly advances our understanding of the nucleation step in autophagosome formation.


Subject(s)
Autophagosomes/metabolism , Autophagy-Related Protein 12/metabolism , Autophagy-Related Protein 5/metabolism , Autophagy-Related Proteins/metabolism , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Autophagosomes/enzymology , Autophagy , Endopeptidases/metabolism , Gene Deletion , Protein Binding , Protein Kinases/metabolism , Protein Transport , Saccharomyces cerevisiae/enzymology
16.
J Biosci Bioeng ; 102(3): 184-92, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17046531

ABSTRACT

Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7 were isolated from soil samples as propane-utilizing bacteria and were found to be able to utilize various gaseous and liquid n-alkanes as carbon and energy sources. One gene cluster, M-prmABCD, and two gene clusters, P-prm1ABCD and P-prm2ABCD, were cloned from the genomes of Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7, respectively. These gene clusters are homologous to the gene cluster encoding the multicomponent propane monooxygenase (prmABCD) of Gordonia sp. TY-5. The expression of prm gene clusters in Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7 was shown to be induced by gaseous n-alkanes (C2-C4) except methane, suggesting that the products of these genes are involved in gaseous n-alkane oxidation. Homologous genes for an alkane hydroxylase system (alk system) involved in liquid n-alkane oxidation were also cloned from the genomic DNA of Mycobacterium sp. TY-6. The alk gene cluster was transcribed in response to liquid n-alkanes (C11-C15). These results indicate that Mycobacterium sp. TY-6 has two distinct gene clusters for multicomponent monooxygenases involved in alkane oxidation. Whole-cell reactions revealed that propane is oxidized to 1-propanol through terminal oxidation in Mycobacterium sp. TY-6 and that propane is oxidized to 1-propanol and 2-propanol through both terminal and subterminal oxidations in Pseudonocardia sp. TY-7. This study reveals the diversity of propane metabolism present in microorganisms.


Subject(s)
Actinomycetales/genetics , Alkanes/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Enzymologic/physiology , Mixed Function Oxygenases/genetics , Mycobacterium/genetics , Actinomycetales/enzymology , Bacterial Proteins/biosynthesis , Cloning, Molecular , Genome, Bacterial/genetics , Mixed Function Oxygenases/metabolism , Mycobacterium/enzymology , Oxidation-Reduction , Soil Microbiology
17.
FEMS Yeast Res ; 8(4): 607-14, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18373682

ABSTRACT

We previously discovered that the budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene that confers resistance to the proline analogue azetidine-2-carboxylate (AZC). The MPR1-encoded protein (Mpr1) is an N-acetyltransferase that detoxifies AZC and is a novel member of the GCN5-related N-acetyltransferase (GNAT) superfamily. Mpr1 can reduce intracellular oxidation levels and protect yeast cells from oxidative stress, heat shock, freezing, or ethanol treatment. Here, we analyzed the amino acid residues in Mpr1 involved in substrate binding and catalysis by site-directed mutagenesis. The mutated genes were expressed in Escherichia coli, and the recombinant Strep-tagged fusion proteins were analyzed in terms of AZC resistance and acetyltransferase activity. The replacement of Arg145, which is conserved in the GNAT superfamily, by Ala, Asp, Glu, Gly, or Trp led to a growth defect of transformants grown in the presence of AZC. Kinetic studies demonstrated that these mutations caused a large reduction in the affinity for AZC and acetyl-CoA, suggesting that Arg145 interacts with both substrates. Among seven conserved Tyr residues, one of which may be a catalytic residue in the GNAT superfamily, Tyr166Ala- showed no detectable activity and Tyr166Phe-Mpr1, a remarkable decrease of the k(cat)/K(m) value. This result suggests that Tyr166 is critical for the catalysis.


Subject(s)
Acetyltransferases/metabolism , Amino Acid Substitution/genetics , Mutagenesis, Site-Directed , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Acetyl Coenzyme A/metabolism , Acetyltransferases/genetics , Amino Acid Sequence , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Azetidinecarboxylic Acid/metabolism , Azetidinecarboxylic Acid/pharmacology , Binding Sites , Drug Resistance, Fungal/genetics , Inactivation, Metabolic , Kinetics , Molecular Sequence Data , Protein Binding , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment
18.
J Bacteriol ; 189(3): 886-93, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17071761

ABSTRACT

In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane --> 2-propanol --> acetone --> methyl acetate --> acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism.


Subject(s)
Acetone/metabolism , Bacterial Proteins/metabolism , Gordonia Bacterium/metabolism , Propane/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Gene Order , Genes, Bacterial , Gordonia Bacterium/genetics , Ketones/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Models, Genetic , Molecular Sequence Data , NADP/metabolism , Oxidation-Reduction , Oxygen/metabolism
19.
J Bacteriol ; 185(24): 7120-8, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14645271

ABSTRACT

A new isolate, Gordonia sp. strain TY-5, is capable of growth on propane and n-alkanes with C(13) to C(22) carbon chains as the sole source of carbon. In whole-cell reactions, significant propane oxidation to 2-propanol was detected. A gene cluster designated prmABCD, which encodes the components of a putative dinuclear-iron-containing multicomponent monooxygenase, including the large and small subunits of the hydroxylase, an NADH-dependent acceptor oxidoreductase, and a coupling protein, was cloned and sequenced. A mutant with prmB disrupted (prmB::Kan(r)) lost the ability to grow on propane, and Northern blot analysis revealed that polycistronic transcription of the prm genes was induced during its growth on propane. These results indicate that the prmABCD gene products play an essential role in propane oxidation by the bacterium. Downstream of the prm genes, an open reading frame (adh1) encoding an NAD(+)-dependent secondary alcohol dehydrogenase was identified, and the protein was purified and characterized. The Northern blot analysis results and growth properties of a disrupted mutant (adh1::Kan(r)) indicate that Adh1 plays a major role in propane metabolism. Two additional NAD(+)-dependent secondary alcohol dehydrogenases (Adh2 and Adh3) were also found to be involved in 2-propanol oxidation. On the basis of these results, we conclude that Gordonia sp. strain TY-5 oxidizes propane by monooxygenase-mediated subterminal oxidation via 2-propanol.


Subject(s)
Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Gordonia Bacterium/enzymology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Propane/metabolism , Cloning, Molecular , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Gordonia Bacterium/genetics , NAD/metabolism , RNA, Messenger
20.
J Bacteriol ; 186(21): 7214-20, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15489432

ABSTRACT

A new isolate, Mycobacterium sp. strain P101, is capable of growth on methyl-branched alkanes (pristane, phytane, and squalane). Among ca. 10,000 Tn5-derived mutants, we characterized 2 mutants defective in growth on pristane or n-hexadecane. A single copy of Tn5 was found to be inserted into the coding region of mcr (alpha-methylacyl coenzyme A [alpha-methylacyl-CoA] racemase gene) in mutant P1 and into the coding region of mls (malate synthase gene) in mutant H1. Mutant P1 could not grow on methyl-branched alkanes. The recombinant Mcr produced in Escherichia coli was confirmed to catalyze racemization of (R)-2-methylpentadecanoyl-CoA, with a specific activity of 0.21 micromol . min(-1) . mg of protein(-1). Real-time quantitative reverse transcriptase PCR analyses indicated that mcr gene expression was enhanced by the methyl-branched alkanes pristane and squalane. Mutant P1 used (S)-2-methylbutyric acid for growth but did not use the racemic compound, and growth on n-hexadecane was not inhibited by pristane. These results suggested that the oxidation of the methyl-branched alkanoic acid is inhibited by the (R) isomer, although the (R) isomer was not toxic during growth on n-hexadecane. Based on these results, Mcr is suggested to play a critical role in beta-oxidation of methyl-branched alkanes in Mycobacterium. On the other hand, mutant H1 could not grow on n-hexadecane, but it partially retained the ability to grow on pristane. The reduced growth of mutant H1 on pristane suggests that propionyl-CoA is available for cell propagation through the 2-methyl citric acid cycle, since propionyl-CoA is produced through beta-oxidation of pristane.


Subject(s)
Alkanes/metabolism , Mycobacterium/genetics , Racemases and Epimerases/metabolism , Biodegradation, Environmental , DNA Transposable Elements , DNA, Ribosomal/analysis , Malate Synthase/genetics , Malate Synthase/metabolism , Molecular Sequence Data , Mutagenesis, Insertional , Mycobacterium/enzymology , Mycobacterium/growth & development , RNA, Ribosomal, 16S/genetics , Racemases and Epimerases/genetics , Sequence Analysis, DNA , Stereoisomerism , Terpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL