Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Acoust Soc Am ; 151(6): 3947, 2022 06.
Article in English | MEDLINE | ID: mdl-35778189

ABSTRACT

Underwater explosions from activities such as construction, demolition, and military activities can damage non-auditory tissues in fishes. To better understand these effects, Pacific mackerel (Scomber japonicus) were placed in mid-depth cages with water depth of approximately 19.5 m and exposed at distances of 21 to 807 m to a single mid-depth detonation of C4 explosive (6.2 kg net explosive weight). Following exposure, potential correlations between blast acoustics and observed physical effects were examined. Primary effects were damage to the swim bladder and kidney that exceeded control levels at ≤333 m from the explosion [peak sound pressure level 226 dB re 1 µPa, sound exposure level (SEL) 196 dB re 1 µPa2 s, pressure impulse 98 Pa s]. A proportion of fish were dead upon retrieval at 26-40 min post exposure in 6 of 12 cages located ≤157 m from the explosion. All fish that died within this period suffered severe injuries, especially swim bladder and kidney rupture. Logistic regression models demonstrated that fish size or mass was not important in determining susceptibility to injury and that peak pressure and SEL were better predictors of injury than was pressure impulse.


Subject(s)
Explosions , Perciformes , Air Sacs , Animals , Fishes , Sound
2.
J Acoust Soc Am ; 147(4): 2383, 2020 04.
Article in English | MEDLINE | ID: mdl-32359256

ABSTRACT

Explosions from activities such as construction, demolition, and military activities are increasingly encountered in the underwater soundscape. However, there are few scientifically rigorous data on the effects of underwater explosions on aquatic animals, including fishes. Thus, there is a need for data on potential effects on fishes collected simultaneously with data on the received signal characteristics that result in those effects. To better understand potential physical effects on fishes, Pacific sardines (Sardinops sagax) were placed in cages at mid-depth at distances of 18 to 246 m from a single mid-depth detonation of C4 explosive (4.66 kg net explosive weight). The experimental site was located in the coastal ocean with a consistent depth of approximately 19.5 m. Following exposure, potential correlations between blast acoustics and observed physical effects were examined. Acoustic metrics were calculated as a function of range, including peak pressure, sound exposure level, and integrated pressure over time. Primary effects related to exposure were damage to the swim bladder and kidney. Interestingly, the relative frequency of these two injuries displayed a non-monotonic dependence with range from the explosion in relatively shallow water. A plausible explanation connecting swim bladder expansion with negative pressure as influenced by bottom reflection is proposed.


Subject(s)
Explosions , Sound , Acoustics , Animals , Fishes , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL