Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Cell ; 51(5): 618-31, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-24011591

ABSTRACT

The Keap1-Nrf2 system and autophagy are both involved in the oxidative-stress response, metabolic pathways, and innate immunity, and dysregulation of these processes is associated with pathogenic processes. However, the interplay between these two pathways remains largely unknown. Here, we show that phosphorylation of the autophagy-adaptor protein p62 markedly increases p62's binding affinity for Keap1, an adaptor of the Cul3-ubiquitin E3 ligase complex responsible for degrading Nrf2. Thus, p62 phosphorylation induces expression of cytoprotective Nrf2 targets. p62 is assembled on selective autophagic cargos such as ubiquitinated organelles and subsequently phosphorylated in an mTORC1-dependent manner, implying coupling of the Keap1-Nrf2 system to autophagy. Furthermore, persistent activation of Nrf2 through accumulation of phosphorylated p62 contributes to the growth of human hepatocellular carcinomas (HCCs). These results demonstrate that selective autophagy and the Keap1-Nrf2 pathway are interdependent, and that inhibitors of the interaction between phosphorylated p62 and Keap1 have potential as therapeutic agents against human HCC.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Autophagy/physiology , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Adenoma/metabolism , Adenoma/pathology , Amino Acid Sequence , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Crystallography, X-Ray , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 1 , Mice , Molecular Sequence Data , Multiprotein Complexes/metabolism , Phosphorylation , Sequestosome-1 Protein , TOR Serine-Threonine Kinases/metabolism
2.
J Biol Chem ; 289(36): 24944-55, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25049227

ABSTRACT

The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. These pathways are interdependent, and dysfunction in either pathway causes accumulation of ubiquitin-positive aggregates, a hallmark of human pathological conditions. To elucidate in vivo compensatory action(s) against proteasomal dysfunction, we developed mice with reduced proteasome activity in their livers. The mutant mice exhibited severe liver damage, accompanied by formation of aggregates positive for ubiquitin and p62/Sqstm1, an adaptor protein for both selective autophagy and the anti-oxidative Keap1-Nrf2 pathway. These aggregates were selectively entrapped by autophagosomes, and pathological features of livers with impaired proteasome activity were exacerbated by simultaneous suppression of autophagy. In contrast, concomitant loss of p62/Sqstm1 had no apparent effect on the liver pathology though p62/Sqstm1 was indispensable for the aggregates formation. Furthermore, defective proteasome function led to transcriptional activation of the Nrf2, which served as a physiological adaptation. Our in vivo data suggest that cells contain networks of cellular defense mechanisms against defective proteostasis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy , Cytoskeletal Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Animals , Cytoskeletal Proteins/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Immunoblotting , Kelch-Like ECH-Associated Protein 1 , Liver/metabolism , Liver/pathology , Liver/ultrastructure , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Microscopy, Immunoelectron , NF-E2-Related Factor 2/genetics , Phagosomes/genetics , Phagosomes/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/genetics , Sequestosome-1 Protein , Time Factors , Ubiquitin/metabolism
3.
Nat Commun ; 7: 12030, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27345495

ABSTRACT

p62/Sqstm1 is a multifunctional protein involved in cell survival, growth and death, that is degraded by autophagy. Amplification of the p62/Sqstm1 gene, and aberrant accumulation and phosphorylation of p62/Sqstm1, have been implicated in tumour development. Herein, we reveal the molecular mechanism of p62/Sqstm1-dependent malignant progression, and suggest that molecular targeting of p62/Sqstm1 represents a potential chemotherapeutic approach against hepatocellular carcinoma (HCC). Phosphorylation of p62/Sqstm1 at Ser349 directs glucose to the glucuronate pathway, and glutamine towards glutathione synthesis through activation of the transcription factor Nrf2. These changes provide HCC cells with tolerance to anti-cancer drugs and proliferation potency. Phosphorylated p62/Sqstm1 accumulates in tumour regions positive for hepatitis C virus (HCV). An inhibitor of phosphorylated p62-dependent Nrf2 activation suppresses the proliferation and anticancer agent tolerance of HCC. Our data indicate that this Nrf2 inhibitor could be used to make cancer cells less resistant to anticancer drugs, especially in HCV-positive HCC patients.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Hepacivirus/isolation & purification , Hepatitis C/complications , NF-E2-Related Factor 2/metabolism , Sequestosome-1 Protein/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Survival , Gene Expression Regulation, Neoplastic/drug effects , Hepatitis C/virology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/virology , Mice , Microarray Analysis , NF-E2-Related Factor 2/genetics , Sequestosome-1 Protein/genetics
4.
J Cell Biol ; 193(2): 275-84, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21482715

ABSTRACT

Suppression of autophagy is always accompanied by marked accumulation of p62, a selective autophagy substrate. Because p62 interacts with the Nrf2-binding site on Keap1, which is a Cullin 3-based ubiquitin ligase adapter protein, autophagy deficiency causes competitive inhibition of the Nrf2-Keap1 interaction, resulting in stabilization of Nrf2 followed by transcriptional activation of Nrf2 target genes. Herein, we show that liver-specific autophagy-deficient mice harbor adenomas linked to both the formation of p62- and Keap1-positive cellular aggregates and induction of Nrf2 targets. Importantly, similar aggregates were identified in more than 25% of human hepatocellular carcinomas (HCC), and induction of Nrf2 target genes was recognized in most of these tumors. Gene targeting of p62 in an HCC cell line markedly abrogates the anchorage-independent growth, whereas forced expression of p62, but not a Keap1 interaction-defective mutant, resulted in recovery of the growth defect. These results indicate the involvement of persistent activation of Nrf2 through the accumulation of p62 in hepatoma development.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Hepatocellular/metabolism , Heat-Shock Proteins/metabolism , Liver Neoplasms/metabolism , NF-E2-Related Factor 2/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Autophagy , Autophagy-Related Protein 7 , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cytoskeletal Proteins/metabolism , Female , Heat-Shock Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , Liver Neoplasms/pathology , Male , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Middle Aged , Sequestosome-1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL