Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
Add more filters

Publication year range
1.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36564184

ABSTRACT

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Subject(s)
Hypothalamic Hormones , Sleep Deprivation , Rats , Male , Humans , Animals , Prolactin-Releasing Hormone/pharmacology , Prolactin-Releasing Hormone/metabolism , Sleep Deprivation/metabolism , Mood Disorders/etiology , Quality of Life , Rats, Wistar , Hypothalamic Hormones/metabolism , Sleep/physiology , Neurons/physiology , Norepinephrine/metabolism
2.
Biometals ; 37(2): 461-475, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110781

ABSTRACT

Citric acid plays an ubiquitous role in the complexation of essential metals like iron and thus it has a key function making them biologically available. For this, iron(III) citrate complexes are considered among the most significant coordinated forms of ferric iron that take place in biochemical processes of all living organisms. Although these systems hold great biological relevance, their coordination chemistry has not been fully elucidated yet. The current study aimed to investigate the speciation of iron(III) citrate using Mössbauer and electron paramagnetic resonance spectroscopies. Our aim was to gain insights into the structure and nuclearity of the complexes depending on the pH and iron to citrate ratio. By applying the frozen solution technique, the results obtained directly reflect the iron speciation present in the aqueous solution. At 1:1 iron:citrate molar ratio, polynuclear species prevailed forming most probably a trinuclear structure. In the case of citrate excess, the coexistence of several monoiron species with different coordination environments was confirmed. The stability of the polynuclear complexes was checked in the presence of organic solvents.


Subject(s)
Ferric Compounds , Iron , Iron/chemistry , Ferric Compounds/chemistry , Citric Acid/chemistry , Citrates/chemistry
3.
Ecotoxicol Environ Saf ; 281: 116669, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38954908

ABSTRACT

In most of advanced oxidation processes (AOPs) used to destroy harmful organic chemicals in water/wastewater hydroxyl radical (•OH) reactions oxidize (increasing the oxygen/carbon ratio in the molecules) and mineralize (transforming them to inorganic molecules, H2O, CO2, etc.) these contaminants. In this paper, we used the radiolysis of water to produce •OH and characterised the rate of oxidation and mineralization by the dose dependences of the Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) content values. Analysis of the dose dependences for 34 harmful organic compounds showed large differences in the oxidation and mineralization rates and these parameters are characteristic to the given group of chemicals. E.g., the rate of oxidation is relatively low for fluoroquinolone antibiotics; it is high for ß-blocker medicines. Mineralization rates are low for both fluoroquinolones and ß-blockers. The one-electron-oxidant •OH in most cases induces two - four-electron-oxidations. Most of the degradation takes place gradually, through several stable molecule intermediates. However, based on the results it is likely, that some part of the oxidation and mineralization takes place parallel. The organic radicals formed in •OH reactions react with several O2 molecules and release several inorganic fragments during the radical life cycle.


Subject(s)
Hydroxyl Radical , Organic Chemicals , Oxidation-Reduction , Water Pollutants, Chemical , Hydroxyl Radical/chemistry , Water Pollutants, Chemical/chemistry , Organic Chemicals/chemistry , Biological Oxygen Demand Analysis , Wastewater/chemistry , Carbon/chemistry
4.
Molecules ; 29(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38257318

ABSTRACT

The long time (2 h) required for measurement, expensive chemicals (Ag2SO4), and toxic reagents (K2Cr2O7, HgSO4) limit the application of the standard method for measuring the oxygen equivalent of organic content in wastewater (chemical oxygen demand, COD). In recent years, the COD has increasingly been replaced by the total organic carbon (TOC) parameter. Since the limit values of the pollution levels are usually given in terms of the COD, efforts are being made to find the correlation between these parameters. Several papers have published correlation analyses of COD and TOC for industrial and municipal wastewater, but the relationship has not been discussed for individual chemicals. Here, this relationship was investigated using 70 contaminants (laboratory chemicals, pharmaceuticals, and pesticides). The calculated COD values, in most cases, agreed, within ~10%, with the experimental ones; for tetracyclines and some chloroaromatic molecules, the measured values were 20-50% lower than the calculated values. The COD/TOC ratios were between 2 and 3: for macrolides, they were ~3; for fluoroquinolones and tetracyclines, they were ~2. The molecular structure dependence of the ratio necessitates the establishing of the correlation on an individual basis. In advanced oxidation processes (AOPs), the ratio changes during degradation, limiting the application of TOC instead of COD.

5.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511494

ABSTRACT

Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamic nucleus (PVH) are in the position to integrate stress-related information and initiate adaptive neuroendocrine-, autonomic-, metabolic- and behavioral responses. In addition to hypophyseotropic cells, CRH is widely expressed in the CNS, however its involvement in the organization of the stress response is not fully understood. In these experiments, we took advantage of recently available Crh-IRES-Cre;Ai9 mouse line to study the recruitment of hypothalamic and extrahypothalamic CRH neurons in categorically distinct, acute stress reactions. A total of 95 brain regions in the adult male mouse brain have been identified as containing putative CRH neurons with significant expression of tdTomato marker gene. With comparison of CRH mRNA and tdTomato distribution, we found match and mismatch areas. Reporter mice were then exposed to restraint, ether, high salt, lipopolysaccharide and predator odor stress and neuronal activation was revealed by FOS immunocytochemistry. In addition to a core stress system, stressor-specific areas have been revealed to display activity marker FOS. Finally, activation of CRH neurons was detected by colocalization of FOS in tdTomato expressing cells. All stressors resulted in profound activation of CRH neurons in the hypothalamic paraventricular nucleus; however, a differential activation of pattern was observed in CRH neurons in extrahypothalamic regions. This comprehensive description of stress-related CRH neurons in the mouse brain provides a starting point for a systematic functional analysis of the brain stress system and its relation to stress-induced psychopathologies.


Subject(s)
Corticotropin-Releasing Hormone , Hypothalamus , Mice , Male , Animals , Corticotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Brain/metabolism , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
6.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069185

ABSTRACT

The ionic environment within the nucleoplasm might diverge from the conditions found in the cytoplasm, potentially playing a role in the cellular stress response. As a result, it is conceivable that interactions of nuclear actin and actin-binding proteins (ABPs) with apoptosis factors may differ in the nucleoplasm and cytoplasm. The primary intracellular stress response is Ca2+ influx. The junctional mediating and regulating Y protein (JMY) is an actin-binding protein and has the capability to interact with the apoptosis factor p53 in a Ca2+-dependent manner, forming complexes that play a regulatory role in cytoskeletal remodelling and motility. JMY's presence is observed in both the cytoplasm and nucleoplasm. Here, we show that ex vivo ectocervical squamous cells subjected to electroporation with JMY protein exhibited varying morphological alterations. Specifically, the highly differentiated superficial and intermediate cells displayed reduced nuclear size. In inflamed samples, nuclear enlargement and simultaneous cytoplasmic reduction were observable and showed signs of apoptotic processes. In contrast, the less differentiated parabasal and metaplastic cells showed increased cytoplasmic activity and the formation of membrane protrusions. Surprisingly, in severe inflammation, vaginosis or ASC-US (Atypical Squamous Cells of Undetermined Significance), JMY appears to influence only the nuclear and perinuclear irregularities of differentiated cells, and cytoplasmic abnormalities still existed after the electroporation. Our observations can provide an appropriate basis for the exploration of the relationship between cytopathologically relevant morphological changes of epithelial cells and the function of ABPs. This is particularly important since ABPs are considered potential diagnostic and therapeutic biomarkers for both cancers and chronic inflammation.


Subject(s)
Actins , Nuclear Proteins , Humans , Actins/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Epithelial Cells/metabolism , Electroporation , Inflammation
7.
Photochem Photobiol Sci ; 21(6): 983-996, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35199321

ABSTRACT

Iron (Fe) is an essential cofactor for all livings. Although Fe membrane transport mechanisms often utilize FeII, uncoordinated or deliberated ferrous ions can initiate Fenton reactions. FeIII citrate complexes are among the most important complexed forms of FeIII especially in plants that, indeed, can undergo photoreduction. Since leaves as photosynthetic organs of higher plants are generally exposed to illumination in daytime, photoreaction of ferric species may have biological relevance in iron metabolism, the relevance of which is poorly understood. In present work FeIII citrate transformation during the photodegradation in solution and after foliar application on leaves was studied by Mössbauer analysis directly. To obtain irradiation time dependence of the speciation of iron in solutions, four model solutions of different pH values (1.5, 3.3, 5.5, and 7.0) with Fe to citrate molar ratio 1:1.1 were exposed to light. Highly acidic conditions led to a complete reduction of Fe together with the formation of FeII citrate and hexaaqua complexes in equal concentration. At higher pH, the only product of the photodegradation was FeII citrate, which was later reoxidized and polymerized, resulting in the formation of polynuclear stable ferric compound. To test biological relevance, leaves of cabbage were treated with FeIII citrate solution. X-ray fluorescence imaging indicated the accumulation of Fe in the treated leaf parts. Mössbauer analysis revealed the presence of several ferric species incorporated into the biological structure. The Fe speciation observed should be considered in biological systems where FeIII citrate has a ubiquitous role in Fe acquisition and homeostasis.


Subject(s)
Ferric Compounds , Iron , Citrates/chemistry , Citric Acid , Ferric Compounds/chemistry , Iron/chemistry , Photolysis , Plants/metabolism
8.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163282

ABSTRACT

The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Supraoptic Nucleus/metabolism , Vasopressins/metabolism , Adrenocorticotropic Hormone/genetics , Animals , Basal Nucleus of Meynert/metabolism , Brain/metabolism , Corticosterone/metabolism , Corticotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Male , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , RNA, Messenger/metabolism , Rats , Rats, Brattleboro , Social Behavior , Vasopressins/physiology
9.
Water Sci Technol ; 85(2): 685-705, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35100147

ABSTRACT

This study summarizes the results of scientific investigations on the removal of the three most often used ß-blockers (atenolol, metoprolol and propranolol) by various advanced oxidation processes (AOP). The free radical chemistry, rate constants, degradation mechanism and elimination effectiveness of these compounds are discussed together with the technical details of experiments. In most AOP the degradation is predominantly initiated by hydroxyl radicals. In sulfate radical anion-based oxidation processes (SROP) both hydroxyl radicals and sulfate radical anions greatly contribute to the degradation. The rate constants of reactions with these two radicals are in the 109-1010 M-1 s-1 range. The degradation products reflect ipso attack, hydroxylation on the aromatic ring and/or the amino moiety and cleavage of the side chain. Among AOP, photocatalysis and SROP are the most effective for degradation of the three ß-blockers. The operating parameters have to be optimized to the most suitable effectiveness.


Subject(s)
Adrenergic beta-Antagonists , Hydroxyl Radical , Free Radicals , Oxidation-Reduction
10.
Int J Mol Sci ; 22(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669671

ABSTRACT

Triple-negative breast cancer (TNBC) has a poor prognosis as the therapy has several limitations, most importantly, treatment resistance. In this study we examined the different responses of triple-negative breast cancer line MDA-MB-231 and hormone receptor-positive breast cancer line MCF7 to a combined treatment including olaparib, a poly-(ADP ribose) polymerase (PARP) inhibitor, oxaliplatin, a third-generation platinum compound and LY294002, an Akt pathway inhibitor. We applied the drugs in a single, therapeutically relevant concentration individually and in all possible combinations, and we assessed the viability, type of cell death, reactive oxygen species production, cell-cycle phases, colony formation and invasive growth. In agreement with the literature, the MDA-MB-231 cells were more treatment resistant than the MCF7 cells. However, and in contrast with the findings of others, we detected no synergistic effect between olaparib and oxaliplatin, and we found that the Akt pathway inhibitor augmented the cytostatic properties of the platinum compound and/or prevented the cytoprotective effects of PARP inhibition. Our results suggest that, at therapeutically relevant concentrations, the cytotoxicity of the platinum compound dominated over that of the PARP inhibitor and the PI3K inhibitor, even though a regression-based model could have indicated an overall synergy at lower and/or higher concentrations.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chromones/therapeutic use , Morpholines/therapeutic use , Oxaliplatin/therapeutic use , Phthalazines/therapeutic use , Piperazines/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , Neoplasm Invasiveness , Oxaliplatin/pharmacology , Phthalazines/pharmacology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Stem Cell Assay
11.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445722

ABSTRACT

Mitochondria have emerged as a prospective target to overcome drug resistance that limits triple-negative breast cancer therapy. A novel mitochondria-targeted compound, HO-5114, demonstrated higher cytotoxicity against human breast cancer lines than its component-derivative, Mito-CP. In this study, we examined HO-5114's anti-neoplastic properties and its effects on mitochondrial functions in MCF7 and MDA-MB-231 human breast cancer cell lines. At a 10 µM concentration and within 24 h, the drug markedly reduced viability and elevated apoptosis in both cell lines. After seven days of exposure, even at a 75 nM concentration, HO-5114 significantly reduced invasive growth and colony formation. A 4 h treatment with 2.5 µM HO-5114 caused a massive loss of mitochondrial membrane potential, a decrease in basal and maximal respiration, and mitochondrial and glycolytic ATP production. However, reactive oxygen species production was only moderately elevated by HO-5114, indicating that oxidative stress did not significantly contribute to the drug's anti-neoplastic effect. These data indicate that HO-5114 may have potential for use in the therapy of triple-negative breast cancer; however, the in vivo toxicity and anti-neoplastic effectiveness of the drug must be determined to confirm its potential.


Subject(s)
Breast Neoplasms/drug therapy , Cytostatic Agents/pharmacology , Mitochondria/drug effects , Nitrogen Oxides/pharmacology , Pyrroles/pharmacology , Apoptosis/drug effects , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Membranes/drug effects , Reactive Oxygen Species/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
12.
Brain Behav Immun ; 84: 218-228, 2020 02.
Article in English | MEDLINE | ID: mdl-31821847

ABSTRACT

Chronic stress is often accompanied by gastrointestinal symptoms, which might be due to stress-induced shift of gut microbiome to pathogenic bacteria. It has been hypothesized that stress alters gut permeability and results in mild endotoxemia which exaggerates HPA activity and contributes to anxiety and depression. To reveal the relationship between microbiome composition, stress-induced gastrointestinal functions and behavior, we treated chronically stressed mice with non-absorbable antibiotic, rifaximin. The "two hits" stress paradigm was used, where newborn mice were separated from their mothers for 3 h daily as early life adversity (maternal separation, MS) and exposed to 4 weeks chronic variable stress (CVS) as adults. 16S rRNA based analysis of gut microbiome revealed increases of Bacteroidetes and Proteobacteria and more specifically, Clostridium species in chronically stressed animals. In mice exposed to MS + CVS, we found extenuation of colonic mucosa, increased bacterial translocation to mesenteric lymph node, elevation of plasma LPS levels and infiltration of F4/80 positive macrophages into the colon lamina propria. Chronically stressed mice displayed behavioral signs of anxiety-like behavior and neophobia. Rifaximin treatment decreased Clostridium concentration, gut permeability and LPS plasma concentration and increased colonic expression of tight junction proteins (TJP1, TJP2) and occludin. However, these beneficial effects of rifaximin in chronically stressed mice was not accompanied by positive changes in behavior. Our results suggest that non-absorbable antibiotic treatment alleviates stress-induced local pathologies, however, does not affect stress-induced behavior.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Rifaximin , Animals , Anti-Bacterial Agents/pharmacology , Behavior, Animal/drug effects , Colon/drug effects , Colon/microbiology , Gastrointestinal Microbiome/drug effects , Maternal Deprivation , Mice , Permeability/drug effects , RNA, Ribosomal, 16S/genetics , Rifaximin/pharmacology , Stress, Physiological/drug effects
13.
Planta Med ; 86(11): 790-799, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32450572

ABSTRACT

Intestinal α-glucosidase and α-amylase break down nutritional poly- and oligosaccharides to monosaccharides and their activity significantly contributes to postprandial hyperglycemia. Competitive inhibitors of these enzymes, such as acarbose, are effective antidiabetic drugs, but have unpleasant side effects. In our ethnopharmacology inspired investigations, we found that wild strawberry (Fragaria vesca), blackberry (Rubus fruticosus), and European blueberry (Vaccinium myrtillus) leaf extracts inhibit α-glucosidase and α-amylase enzyme activity in vitro and are effective in preventing postprandial hyperglycemia in vivo. Toxicology tests on H9c2 rat embryonic cardiac muscle cells demonstrated that berry leaf extracts have no cytotoxic effects. Oral administration of these leaf extracts alone or as a mixture to normal (control), obese, prediabetic, and streptozotocin-induced diabetic mice attenuated the starch-induced rise of blood glucose levels. The efficiency was similar to that of acarbose on blood glucose. These results highlight berry leaf extracts as candidates for testing in clinical trials in order to assess the clinical significance of their effects on glycemic control.


Subject(s)
Blueberry Plants , Diabetes Mellitus, Experimental , Fragaria , Hyperglycemia , Prediabetic State , Rubus , Animals , Blood Glucose , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Mice , Plant Extracts , Rats , Starch
14.
Proc Natl Acad Sci U S A ; 114(6): 1359-1364, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28123062

ABSTRACT

The etiology of benign prostatic hyperplasia (BPH) is multifactorial, and chronic inflammation plays a pivotal role in its pathogenesis. Growth hormone-releasing hormone (GHRH) is a hypothalamic neuropeptide that has been shown to act as paracrine/autocrine factor in various malignancies including prostate cancer. GHRH and its receptors are expressed in experimental models of BPH, in which antagonists of GHRH suppressed the levels of proinflammatory cytokines and altered the expression of genes related to epithelial-to-mesenchymal transition (EMT). We investigated the effects of GHRH antagonist on prostatic enlargement induced by inflammation. Autoimmune prostatitis in Balb/C mice was induced by a homogenate of reproductive tissues of male rats. During the 8-wk induction of chronic prostatitis, we detected a progressive increase in prostatic volume reaching 92% at week 8 compared with control (P < 0.001). Daily treatment for 1 mo with GHRH antagonist MIA-690 caused a 30% reduction in prostate volume (P < 0.05). Conditioned medium derived from macrophages increased the average volume of spheres by 82.7% (P < 0.001) and elevated the expression of mRNA for N-cadherin, Snail, and GHRH GHRH antagonist reduced the average volume of spheres stimulated by inflammation by 75.5% (P < 0.05), and TGF-ß2 by 91.8% (P < 0.01). The proliferation of primary epithelial cells stimulated by IL-17A or TGF-ß2 was also inhibited by 124.1% and 69.9%, respectively. GHRH stimulated the growth of BPH-1 and primary prostate spheres. This study provides evidence that GHRH plays important roles in prostatic inflammation and EMT and suggests the merit of further investigation to elucidate the effects of GHRH antagonists in prostatitis and BPH.


Subject(s)
Cell Proliferation/drug effects , Epithelial Cells/drug effects , Growth Hormone-Releasing Hormone/analogs & derivatives , Growth Hormone-Releasing Hormone/antagonists & inhibitors , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Cell Proliferation/genetics , Cells, Cultured , Epithelial Cells/metabolism , Gene Expression/drug effects , Growth Hormone-Releasing Hormone/genetics , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone-Releasing Hormone/pharmacology , Humans , Male , Mice, Inbred BALB C , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Prostatitis/genetics , Prostatitis/metabolism , Prostatitis/pathology , Rats , Transforming Growth Factor beta2/pharmacology
15.
Planta ; 249(3): 751-763, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30382344

ABSTRACT

MAIN CONCLUSION: Fe uptake machinery of chloroplasts prefers to utilise Fe(III)-citrate over Fe-nicotianamine complexes. Iron uptake in chloroplasts is a process of prime importance. Although a few members of their iron transport machinery were identified, the substrate preference of the system is still unknown. Intact chloroplasts of oilseed rape (Brassica napus) were purified and subjected to iron uptake studies using natural and artificial iron complexes. Fe-nicotianamine (NA) complexes were characterised by 5 K, 5 T Mössbauer spectrometry. Expression of components of the chloroplast Fe uptake machinery was also studied. Fe(III)-NA contained a minor paramagnetic Fe(II) component (ca. 9%), a paramagnetic Fe(III) component exhibiting dimeric or oligomeric structure (ca. 20%), and a Fe(III) complex, likely being a monomeric structure, which undergoes slow electronic relaxation at 5 K (ca. 61%). Fe(II)-NA contained more than one similar chemical Fe(II) environment with no sign of Fe(III) components. Chloroplasts preferred Fe(III)-citrate compared to Fe(III)-NA and Fe(II)-NA, but also to Fe(III)-EDTA and Fe(III)-o,o'EDDHA, and the Km value was lower for Fe(III)-citrate than for the Fe-NA complexes. Only the uptake of Fe(III)-citrate was light-dependent. Regarding the components of the chloroplast Fe uptake system, only genes of the reduction-based Fe uptake system showed high expression. Chloroplasts more effectively utilize Fe(III)-citrate, but hardly Fe-NA complexes in Fe uptake.


Subject(s)
Azetidinecarboxylic Acid/analogs & derivatives , Brassica napus/metabolism , Chloroplasts/metabolism , Ferric Compounds/metabolism , Iron/metabolism , Azetidinecarboxylic Acid/metabolism , Real-Time Polymerase Chain Reaction , Spectroscopy, Mossbauer , Transcriptome
16.
J Pathol ; 245(4): 478-490, 2018 08.
Article in English | MEDLINE | ID: mdl-29774542

ABSTRACT

Dysregulation of neuropeptides may play an important role in aging-induced impairments. Among them, pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. We hypothesized that the progressive decline of PACAP throughout life and the well-known general cytoprotective effects of PACAP lead to age-related pathophysiological changes in PACAP deficiency, supported by the increased vulnerability to various stressors of animals partially or totally lacking PACAP. Using young and aging CD1 PACAP knockout (KO) and wild type (WT) mice, we demonstrated pre-senile amyloidosis in young PACAP KO animals and showed that senile amyloidosis appeared accelerated, more generalized, more severe, and affected more individuals. Histopathology showed age-related systemic amyloidosis with mainly kidney, spleen, liver, skin, thyroid, intestinal, tracheal, and esophageal involvement. Mass spectrometry-based proteomic analysis, reconfirmed with immunohistochemistry, revealed that apolipoprotein-AIV was the main amyloid protein in the deposits together with several accompanying proteins. Although the local amyloidogenic protein expression was disturbed in KO animals, no difference was found in laboratory lipid parameters, suggesting a complex pathway leading to increased age-related degeneration with amyloid deposits in the absence of PACAP. In spite of no marked inflammatory histological changes or blood test parameters, we detected a disturbed cytokine profile that possibly creates a pro-inflammatory milieu favoring amyloid deposition. In summary, here we describe accelerated systemic senile amyloidosis in PACAP gene-deficient mice, which might indicate an early aging phenomenon in this mouse strain. Thus, PACAP KO mice could serve as a model of accelerated aging with human relevance. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Amyloidosis/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency , Plaque, Amyloid , Age Factors , Amyloidosis/genetics , Amyloidosis/prevention & control , Animals , Apolipoproteins A/metabolism , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Genetic Predisposition to Disease , Inflammation Mediators/metabolism , Mice, Knockout , Phenotype , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Proteomics/methods , Severity of Illness Index , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Time Factors
17.
Ideggyogy Sz ; 72(3-4): 135-139, 2019 Mar 30.
Article in Hungarian | MEDLINE | ID: mdl-30957469

ABSTRACT

We report the case of a 60-year-old man who exhibited trigeminal autonomic symptoms on his right side (numbness of the face, reddening of the eye, nasal congestion) occurring several times a day, for a maximum of 60 se-conds, without any pain. The complaints were similar to trigeminal autonomic cephalalgia, just without any headache. Our 60-year-old male patient underwent a craniocervical MRI as part of his neurological workup, which revealed lesions indicative of demyelination. Further testing was guided (ophthalmological examination, VEP, CSF test) by the presumptive diagnosis of multiple sclerosis. It is likely that in his case the cause of these trigeminal and autonomic paroxysms is MS. Here we present an overview of the few cases we found in the literature, although we did not find any similar case reports. Perhaps the most interesting among these is one in which the author describes a family: a 54-year-old female exhibiting the autonomic characteristics of an episodic cluster headache, only without actual headache, her son, who had typical episodic cluster headaches with autonomic symptoms, and the woman's father, whose short-term periorbital headaches were present without autonomic symptoms. We had not previously encountered a case of trigeminal autonomic cephalalgia without headache in our practice, nor have we had an MS patient exhibiting similar neurologic symptoms. The significance of our case lies in its uniqueness.


Subject(s)
Brain/diagnostic imaging , Multiple Sclerosis/diagnosis , Trigeminal Autonomic Cephalalgias/diagnosis , Autonomic Nervous System/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pain
18.
Acta Neuropathol ; 136(3): 461-482, 2018 09.
Article in English | MEDLINE | ID: mdl-30027450

ABSTRACT

Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours. Selective elimination of microglia results in a marked increase in the spread of infection and egress of viral particles into the brain parenchyma, which are associated with diverse neurological symptoms. Microglia recruitment and clearance of infected cells require cell-autonomous P2Y12 signalling in microglia, triggered by nucleotides released from affected neurons. In turn, we identify microglia as key contributors to monocyte recruitment into the inflamed brain, which process is largely independent of P2Y12. P2Y12-positive microglia are also recruited to infected neurons in the human brain during viral encephalitis and both microglial responses and leukocyte numbers correlate with the severity of infection. Thus, our data identify a key role for microglial P2Y12 in defence against neurotropic viruses, whilst P2Y12-independent actions of microglia may contribute to neuroinflammation by facilitating monocyte recruitment to the sites of infection.


Subject(s)
Brain/metabolism , Herpesviridae Infections/metabolism , Microglia/metabolism , Monocytes/metabolism , Receptors, Purinergic P2Y12/metabolism , Signal Transduction/physiology , Animals , Brain/virology , Mice , Microglia/virology , Neurons/metabolism , Neurons/virology
19.
Stress ; 21(2): 151-161, 2018 03.
Article in English | MEDLINE | ID: mdl-29310485

ABSTRACT

Glutamatergic neurons, characterized by vesicular glutamate transporters (VGluT1-3) provide the main excitation in the brain. Their disturbances have been linked to various brain disorders, which could be also modeled by the contextual fear test in rodents. We aimed to characterize the participation of VGluT3 in the development of contextual fear through its contribution to hypothalamic-pituitary-adrenocortical axis (HPA) regulation using knockout (KO) mice. Contextual fear conditioning was induced by foot shock and mice were examined 1 and 7 d later in the same environment comparing wild type with KO. Foot shock increased the immobility time without context specificity. Additionally, foot shock reduced open arm time in the elevated plus maze (EPM) test, and distance traveled in the open field (OF) test, representing the generalization of fear. Moreover, KO mice spent more time with freezing during the contextual fear test, less time in the open arm of the EPM, and traveled a smaller distance in the OF, with less entries into the central area. However, there was no foot shock and genotype interaction suggesting that VGluT3 does not influence the fear conditioning, rather determines anxiety-like characteristic of the mice. The resting hypothalamic CRH mRNA was higher in KO mice with reduced stressor-induced corticosterone elevations. Immunohistochemistry revealed the presence of VGluT3 positive fibers in the paraventricular nucleus of hypothalamus, but not on the hypophysis. As a summary, we confirmed the involvement of VGluT3 in innate fear, but not in the development of fear memory and generalization, with a significant contribution to HPA alterations. Highlights VGluT3 KO mice show innate fear without significant influence on fear memory and generalization. A putative background is the higher resting CRH mRNA level in their PVN and reduced stress-reactivity.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Fear/physiology , Memory/physiology , Amino Acid Transport Systems, Acidic/genetics , Animals , Conditioning, Classical/physiology , Corticosterone/blood , Hypothalamus/metabolism , Male , Mice , Mice, Knockout , Neurons/metabolism
20.
Learn Behav ; 46(4): 430-441, 2018 12.
Article in English | MEDLINE | ID: mdl-30022446

ABSTRACT

This study investigates whether dogs are able to differentiate between people according to whether or not they show similarities to their owners. We hypothesized that dogs would show a preference for the "similar" partner when interacting with unfamiliar humans. After having familiarized with two experimenters displaying different degrees of similarity to their owners, dogs (N = 36) participated in a situation where the desired toy object was made inaccessible in order to find out whether they initiate interaction with the two partners differently. Two different types of "similarity cues" were used (either alone or combined with each other): (1) persistent behavioral characteristics (i.e., familiar vs. strange motion pattern and language usage) and (2) an unfamiliar arbitrary group marker (i.e., one of the potential helpers was wearing clothing similar to that worn by the owner). Results show that although dogs payed equal attention to the human partners displaying various types of similarity to their owners during familiarization, they exhibited a visual attention preference for the human whose motion pattern and language usage were similar to their owner's in the inaccessible-toy task. However, there was weak evidence of discrimination based on the arbitrary group marker (clothing). Although dogs' different tendencies to interact with the potential helpers do not necessarily imply an underlying ability to create social categories based on the degree of similarity between the owner and unfamiliar people, these results suggest that functionally human infant-analogue forms of social categorization may have emerged in dogs.


Subject(s)
Attentional Bias , Dogs/psychology , Human-Animal Bond , Recognition, Psychology , Animals , Cues , Female , Humans , Male , Problem Solving
SELECTION OF CITATIONS
SEARCH DETAIL