ABSTRACT
This study is meant to combine traditional aspects of tracer microinjections using bone landmarks like bregma and lambda with novel procedures in which specific parts of the brain can serve as reference points. For telencephalic and diencephalic injections, the brain surface, the interhemispheric groove and the straight sinus can be used as absolute zero points for dorso-ventral, medio-lateral and rostro-caudal coordinates, respectively. In case of brainstem targets, the surface of the rhomboid fossa, the posterior spinal artery and the obex could serve as reference points along the above-mentioned coordinates. The application of high-precision stereotaxic measurements based on intracranial landmarks and sophisticated surgical procedures can yield well-targeted, small and well circumscribed injection sites that make possible the mapping of discrete nuclear subdivisions or delicate nuclei in the brain.
Subject(s)
Brain Mapping , Brain/anatomy & histology , Stereotaxic Techniques , Animals , Brain/drug effects , Male , Microinjections/methods , Rats , Rats, Sprague-DawleyABSTRACT
Although it has been reported by several laboratories that vestibular stress activates the hypothalamo-pituitary-adrenocortical axis (HPA), the existence of neuronal connections between vestibular and hypothalamic paraventricular neurons has not yet been demonstrated. By the use of a virus-based retrograde trans-synaptic tracing technique in the rat, here we demonstrate vestibular projections to the paraventricular nucleus (PVN). Pseudorabies virus (Bartha strain, type BDR62) was injected into the PVN, and the progression of the infection along synaptically connected neurons was followed in the pons and the medulla, 3 and 4 days post-inoculation. Virus-infected neurons were revealed mainly in the medial vestibular nucleus. Labeled cells were scattered in the spinal, and very rarely in the superior nuclei, but none of them in the lateral vestibular nucleus. Injections of cholera toxin B subunit, a monosynaptic retrograde tracer into the PVN failed to label any cells in the vestibular nuclei. These results provide anatomical evidence for the existence of a vestibulo-paraventricular polysynaptic pathway and support the view that the HPA axis is modulated by vestibular stress.