Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Magn Reson Med ; 91(4): 1586-1597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38169132

ABSTRACT

PURPOSE: To develop a tissue field-filtering algorithm, called maximum spherical mean value (mSMV), for reducing shadow artifacts in QSM of the brain without requiring brain-tissue erosion. THEORY AND METHODS: Residual background field is a major source of shadow artifacts in QSM. The mSMV algorithm filters large field-magnitude values near the border, where the maximum value of the harmonic background field is located. The effectiveness of mSMV for artifact removal was evaluated by comparing existing QSM algorithms in numerical brain simulation as well as using in vivo human data acquired from 11 healthy volunteers and 93 patients. RESULTS: Numerical simulation showed that mSMV reduces shadow artifacts and improves QSM accuracy. Better shadow reduction, as demonstrated by lower QSM variation in the gray matter and higher QSM image quality score, was also observed in healthy subjects and in patients with hemorrhages, stroke, and multiple sclerosis. CONCLUSION: The mSMV algorithm allows QSM maps that are substantially equivalent to those obtained using SMV-filtered dipole inversion without eroding the volume of interest.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Brain/diagnostic imaging , Brain Mapping/methods , Algorithms , Artifacts
2.
Neuroimage ; 268: 119886, 2023 03.
Article in English | MEDLINE | ID: mdl-36669747

ABSTRACT

Quantitative susceptibility mapping (QSM) involves acquisition and reconstruction of a series of images at multi-echo time points to estimate tissue field, which prolongs scan time and requires specific reconstruction technique. In this paper, we present our new framework, called Learned Acquisition and Reconstruction Optimization (LARO), which aims to accelerate the multi-echo gradient echo (mGRE) pulse sequence for QSM. Our approach involves optimizing a Cartesian multi-echo k-space sampling pattern with a deep reconstruction network. Next, this optimized sampling pattern was implemented in an mGRE sequence using Cartesian fan-beam k-space segmenting and ordering for prospective scans. Furthermore, we propose to insert a recurrent temporal feature fusion module into the reconstruction network to capture signal redundancies along echo time. Our ablation studies show that both the optimized sampling pattern and proposed reconstruction strategy help improve the quality of the multi-echo image reconstructions. Generalization experiments show that LARO is robust on the test data with new pathologies and different sequence parameters. Our code is available at https://github.com/Jinwei1209/LARO-QSM.git.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Prospective Studies , Image Processing, Computer-Assisted/methods
3.
Magn Reson Med ; 86(4): 2165-2178, 2021 10.
Article in English | MEDLINE | ID: mdl-34028868

ABSTRACT

PURPOSE: Typical quantitative susceptibility mapping (QSM) reconstruction steps consist of first estimating the magnetization field from the gradient-echo images, and then reconstructing the susceptibility map from the estimated field. The errors from the field-estimation steps may propagate into the final QSM map, and the noise in the estimated field map may no longer be zero-mean Gaussian noise, thus, causing streaking artifacts in the resulting QSM. A multiecho complex total field inversion (mcTFI) method was developed to compute the susceptibility map directly from the multiecho gradient echo images using an improved signal model that retains the Gaussian noise property in the complex domain. It showed improvements in QSM reconstruction over the conventional field-to-source inversion. METHODS: The proposed mcTFI method was compared with the nonlinear total field inversion (nTFI) method in a numerical brain with hemorrhage and calcification, the numerical brains provided by the QSM Challenge 2.0, 18 brains with intracerebral hemorrhage scanned at 3T, and 6 healthy brains scanned at 7T. RESULTS: Compared with nTFI, the proposed mcTFI showed more accurate QSM reconstruction around the lesions in the numerical simulations. The mcTFI reconstructed QSM also showed the best image quality with the least artifacts in the brains with intracerebral hemorrhage scanned at 3T and healthy brains scanned at 7T. CONCLUSION: The proposed multiecho complex total field inversion improved QSM reconstruction over traditional field-to-source inversion through better signal modeling.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Algorithms , Artifacts , Brain/diagnostic imaging , Brain Mapping
4.
J Neuroradiol ; 47(4): 272-277, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31136748

ABSTRACT

BACKGROUND AND PURPOSE: The ability to predict high-grade meningioma preoperatively is important for clinical surgical planning. The purpose of this study is to evaluate the performance of comprehensive multiparametric MRI, including susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM) in predicting high-grade meningioma both qualitatively and quantitatively. METHODS: Ninety-two low-grade and 37 higher grade meningiomas in 129 patients were included in this study. Morphological characteristics, quantitative histogram analysis of QSM and ADC images, and tumor size were evaluated to predict high-grade meningioma using univariate and multivariate analyses. Receiver operating characteristic (ROC) analyses were performed on the morphological characteristics. Associations between Ki-67 proliferative index (PI) and quantitative parameters were calculated using Pearson correlation analyses. RESULTS: For predicting high-grade meningiomas, the best predictive model in multivariate logistic regression analyses included calcification (ß=0.874, P=0.110), peritumoral edema (ß=0.554, P=0.042), tumor border (ß=0.862, P=0.024), tumor location (ß=0.545, P=0.039) for morphological characteristics, and tumor size (ß=4×10-5, P=0.004), QSM kurtosis (ß=-5×10-3, P=0.058), QSM entropy (ß=-0.067, P=0.054), maximum ADC (ß=-1.6×10-3, P=0.003), ADC kurtosis (ß=-0.013, P=0.014) for quantitative characteristics. ROC analyses on morphological characteristics resulted in an area under the curve (AUC) of 0.71 (0.61-0.81) for a combination of them. There were significant correlations between Ki-67 PI and mean ADC (r=-0.277, P=0.031), 25th percentile of ADC (r=-0.275, P=0.032), and 50th percentile of ADC (r=-0.268, P=0.037). CONCLUSIONS: Although SWI and QSM did not improve differentiation between low and high-grade meningiomas, combining morphological characteristics and quantitative metrics can help predict high-grade meningioma.


Subject(s)
Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningioma/diagnostic imaging , Meningioma/pathology , Multiparametric Magnetic Resonance Imaging/methods , Aged , Brain/diagnostic imaging , Brain/pathology , Female , Humans , Male , Middle Aged , Neoplasm Grading , ROC Curve , Retrospective Studies
5.
Eur Radiol ; 29(6): 2751-2759, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30617484

ABSTRACT

OBJECTIVES: Texture analysis performed on MRI images can provide additional quantitative information that is invisible to human assessment. This study aimed to evaluate the feasibility of texture analysis on preoperative conventional MRI images in predicting early malignant transformation from low- to high-grade glioma and compare its utility to histogram analysis alone. METHODS: A total of 68 patients with low-grade glioma (LGG) were included in this study, 15 of which showed malignant transformation. Patients were randomly divided into training (60%) and testing (40%) sets. Texture analyses were performed to obtain the most discriminant factor (MDF) values for both training and testing data. Receiver operating characteristic (ROC) curve analyses were performed on MDF values and 9 histogram parameters in the training data to obtain cutoff values for determining the correct rates of discrimination between two groups in the testing data. RESULTS: The ROC analyses on MDF values resulted in an area under the curve (AUC) of 0.90 (sensitivity 85%, specificity 84%) for T2w FLAIR, 0.92 (86%, 94%) for ADC, 0.96 (97%, 84%) for T1w, and 0.82 (78%, 75%) for T1w + Gd and correctly discriminated between the two groups in 93%, 100%, 93%, and 92% of cases in testing data, respectively. In the astrocytoma subgroup, AUCs were 0.92 (88%, 83%) for T2w FLAIR and 0.90 (92%, 74%) for T1w + Gd and correctly discriminated two groups in 100% and 92% of cases. The MDF outperformed all 9 of the histogram parameters. CONCLUSION: Texture analysis on conventional preoperative MRI images can accurately predict early malignant transformation of LGGs, which may guide therapeutic planning. KEY POINTS: • Texture analysis performed on MRI images can provide additional quantitative information that is invisible to human assessment. • Texture analysis based on conventional preoperative MR images can accurately predict early malignant transformation from low- to high-grade glioma. • Texture analysis is a clinically feasible technique that may provide an alternative and effective way of determining the likelihood of early malignant transformation and help guide therapeutic decisions.


Subject(s)
Brain Neoplasms/diagnosis , Brain/pathology , Cell Transformation, Neoplastic/pathology , Glioma/diagnosis , Magnetic Resonance Imaging/methods , Neoplasm Grading/methods , Adult , Female , Humans , Male , ROC Curve , Reproducibility of Results
6.
AJR Am J Roentgenol ; 212(4): 883-891, 2019 04.
Article in English | MEDLINE | ID: mdl-30779663

ABSTRACT

OBJECTIVE: Both 18F-FDG PET and perfusion MRI are commonly used techniques for posttreatment glioma surveillance. Using integrated PET-MRI, we assessed the rate of discordance between simultaneously acquired FDG PET images and dynamic contrast-enhanced (DCE) perfusion MR images and determined whether tumor genetics predicts discordance. MATERIALS AND METHODS: Forty-one consecutive patients with high-grade gliomas (20 with grade IV gliomas and 21 with grade III gliomas) underwent a standardized tumor protocol performed using an integrated 3-T PET-MRI scanner. Quantitative measures of standardized uptake value, plasma volume, and permeability were obtained from segmented whole-tumor volumes of interest and targeted ROIs. ROC curve analysis and the Youden index were used to identify optimal cutoffs for FDG PET and DCE-MRI. Two-by-two contingency tables and percent agreement were used to assess accuracy and concordance. Twenty-six patients (63%) from the cohort underwent next-generation sequencing for tumor genetics. RESULTS: The best-performing FDG PET and DCE-MRI cutoffs achieved sensitivities of 94% and 91%, respectively; specificities of 56% and 89%, respectively; and accuracies of 80% and 83%, respectively. FDG PET and DCE-MRI findings were discordant for 11 patients (27%), with DCE-MRI findings correct for six of these patients (55%). Tumor grade, tumor volume, bevacizumab exposure, and time since radiation predicted discordance between FDG PET and DCE-MRI findings, with an ROC AUC value of 0.78. Isocitrate dehydrogenase gene and receptor tyrosine kinase gene pathway mutations increased the ROC AUC value to 0.83. CONCLUSION: FDG PET and DCE-MRI show comparable accuracy and sensitivity in identifying tumor progression. These modalities were shown to have discordant findings for more than a quarter of the patients assessed. Tumor genetics may contribute to perfusion-metabolism discordance, warranting further investigation.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Multimodal Imaging , Adult , Aged , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Disease Progression , Female , Fluorodeoxyglucose F18 , Glioma/pathology , Glioma/therapy , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neoplasm Grading , Positron-Emission Tomography , Radiopharmaceuticals , Retrospective Studies , Sensitivity and Specificity , Tumor Burden
7.
J Magn Reson Imaging ; 46(4): 951-971, 2017 10.
Article in English | MEDLINE | ID: mdl-28295954

ABSTRACT

Quantitative susceptibility mapping (QSM) has enabled magnetic resonance imaging (MRI) of tissue magnetic susceptibility to advance from simple qualitative detection of hypointense blooming artifacts to precise quantitative measurement of spatial biodistributions. QSM technology may be regarded to be sufficiently developed and validated to warrant wide dissemination for clinical applications of imaging isotropic susceptibility, which is dominated by metals in tissue, including iron and calcium. These biometals are highly regulated as vital participants in normal cellular biochemistry, and their dysregulations are manifested in a variety of pathologic processes. Therefore, QSM can be used to assess important tissue functions and disease. To facilitate QSM clinical translation, this review aims to organize pertinent information for implementing a robust automated QSM technique in routine MRI practice and to summarize available knowledge on diseases for which QSM can be used to improve patient care. In brief, QSM can be generated with postprocessing whenever gradient echo MRI is performed. QSM can be useful for diseases that involve neurodegeneration, inflammation, hemorrhage, abnormal oxygen consumption, substantial alterations in highly paramagnetic cellular iron, bone mineralization, or pathologic calcification; and for all disorders in which MRI diagnosis or surveillance requires contrast agent injection. Clinicians may consider integrating QSM into their routine imaging practices by including gradient echo sequences in all relevant MRI protocols. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:951-971.


Subject(s)
Artifacts , Contrast Media , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Metals , Humans
8.
Neuroradiology ; 59(5): 499-505, 2017 May.
Article in English | MEDLINE | ID: mdl-28343250

ABSTRACT

PURPOSE: Superselective intra-arterial cerebral infusion (SIACI) of bevacizumab (BV) has emerged as a novel therapy in the treatment of recurrent glioblastoma (GB). This study assessed the use of apparent diffusion coefficient (ADC) in predicting length of survival after SIACI BV and overall survival in patients with recurrent GB. METHODS: Sixty-five patients from a cohort enrolled in a phase I/II trial of SIACI BV for treatment of recurrent GB were retrospectively included in this analysis. MR imaging with a diffusion-weighted (DWI) sequence was performed before and after treatment. ROIs were manually delineated on ADC maps corresponding to the enhancing and non-enhancing portions of the tumor. Cox and logistic regression analyses were performed to determine which ADC values best predicted survival. RESULTS: The change in minimum ADC in the enhancing portion of the tumor after SIACI BV therapy was associated with an increased risk of death (hazard ratio = 2.0, 95% confidence interval(CI) [1.04-3.79], p = 0.038), adjusting for age, tumor size, BV dose, and prior IV BV treatments. Similarly, the change in ADC after SIACI BV therapy was associated with greater likelihood of surviving less than 1 year after therapy (odds ratio = 7.0, 95% CI [1.08-45.7], p = 0.04). Having previously received IV BV was associated with increased risk of death (OR 18, 95% CI [1.8-180.0], p = 0.014). CONCLUSION: In patients with recurrent GB treated with SIACI BV, the change in ADC value after treatment is predictive of overall survival.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Angiogenesis Inhibitors/administration & dosage , Bevacizumab/administration & dosage , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Contrast Media , Diffusion Magnetic Resonance Imaging/methods , Female , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Humans , Infusions, Intra-Arterial , Male , Middle Aged , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/pathology , Prognosis , Retrospective Studies , Survival Rate
9.
J Magn Reson Imaging ; 44(2): 420-5, 2016 08.
Article in English | MEDLINE | ID: mdl-26718014

ABSTRACT

PURPOSE: To investigate the magnetic susceptibility of intracerebral hemorrhages (ICH) at various stages by applying quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: Blood susceptibility was measured serially using QSM after venous blood withdrawal from healthy subjects. Forty-two patients who provided written consent were recruited in this Institutional Review Board-approved study. Gradient echo magnetic resonance imaging (MRI) data of the 42 patients (17 females; 64 ± 12 years) with ICH were processed with QSM. The susceptibilities of various blood products within hematomas were measured on QSM. RESULTS: Blood susceptibility continually increased and reached a plateau 96 hours after venous blood withdrawal. Hematomas at all stages were consistently hyperintense on QSM. Susceptibility was 0.57 ± 0.48, 1.30 ± 0.33, 1.14 ± 0.46, 0.40 ± 0.13, and 0.71 ± 0.31 ppm for hyperacute, acute, early subacute, late subacute, and chronic stages of hematomas, respectively. The susceptibility decrease from early subacute (1.14 ppm) to late subacute (0.4 ppm) was significant (P < 0.01). CONCLUSION: QSM reveals positive susceptibility in hyperacute hematomas, indicating that even at their hyperacute stage, deoxyhemoglobin may exist throughout the hematoma volume, not just at its rim, as seen on conventional T2* imaging. QSM also reveals a reduction of susceptibility from early subacute to late subacute ICH, suggesting that methemoglobin concentration decreases at the late subacute stage. J. Magn. Reson. Imaging 2016;44:420-425.


Subject(s)
Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Disease Progression , Female , Humans , Magnetic Fields , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Severity of Illness Index
10.
J Magn Reson Imaging ; 42(6): 1592-600, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25960320

ABSTRACT

PURPOSE: To assess the reproducibility of brain quantitative susceptibility mapping (QSM) in healthy subjects and in patients with multiple sclerosis (MS) on 1.5 and 3T scanners from two vendors. MATERIALS AND METHODS: Ten healthy volunteers and 10 patients were scanned twice on a 3T scanner from one vendor. The healthy volunteers were also scanned on a 1.5T scanner from the same vendor and on a 3T scanner from a second vendor. Similar imaging parameters were used for all scans. QSM images were reconstructed using a recently developed nonlinear morphology-enabled dipole inversion (MEDI) algorithm with L1 regularization. Region-of-interest (ROI) measurements were obtained for 20 major brain structures. Reproducibility was evaluated with voxel-wise and ROI-based Bland-Altman plots and linear correlation analysis. RESULTS: ROI-based QSM measurements showed excellent correlation between all repeated scans (correlation coefficient R ≥ 0.97), with a mean difference of less than 1.24 ppb (healthy subjects) and 4.15 ppb (patients), and 95% limits of agreements of within -25.5 to 25.0 ppb (healthy subjects) and -35.8 to 27.6 ppb (patients). Voxel-based QSM measurements had a good correlation (0.64 ≤ R ≤ 0.88) and limits of agreements of -60 to 60 ppb or less. CONCLUSION: Brain QSM measurements have good interscanner and same-scanner reproducibility for healthy and MS subjects, respectively, on the systems evaluated in this study.


Subject(s)
Brain/pathology , Brain/physiopathology , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Multiple Sclerosis/physiopathology , Adult , Electric Impedance , Equipment Design , Equipment Failure Analysis , Female , Humans , Image Interpretation, Computer-Assisted/instrumentation , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
11.
Stereotact Funct Neurosurg ; 92(6): 365-71, 2014.
Article in English | MEDLINE | ID: mdl-25359091

ABSTRACT

BACKGROUND/AIMS: A variety of pain syndromes have been treated successfully with deep brain stimulation (DBS) by targeting the thalamic ventroposterolateral (VPL) nucleus. The purpose of this study was to preoperatively identify the thalamic VPL nucleus by diffusion tensor imaging (DTI) fiber tractography (FT) and confirm it intraoperatively. METHODS AND RESULTS: FT was performed to identify the thalamic VPL nucleus in 6 healthy volunteers and a patient with intractable chronic pain. The patient had preoperative DTI followed by DBS with the electrode placed by conventional stereotactic methods. Postoperative CT images of the DBS electrode tip were fused with the preoperative DTI and the electrode was noted to be in the position of the VPL nucleus predicted preoperatively by FT. The electrode was then used as a seed region of interest (ROI) to confirm FT back to the somatosensory cortex. Clinical confirmation was also achieved with the patient's pain relief. In all volunteers, VPL nuclei were identified in similar locations in both thalami, although slight inter- and intrasubject differences were observed. CONCLUSION: DTI has the potential to identify the thalamic nuclei in individuals, which would be more accurate than anatomical localization and likely identical to intraoperative physiological testing. Postoperative DBS electrode placement and the affected cortical areas can be confirmed with coregistration of CT and FT using the electrode as a seed ROI.


Subject(s)
Chronic Pain/therapy , Deep Brain Stimulation , Diffusion Tensor Imaging , Thalamic Nuclei/physiopathology , Adult , Brain Mapping , Chronic Pain/physiopathology , Female , Humans , Male , Pain Management/methods
12.
Childs Nerv Syst ; 30(6): 1135-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24420673

ABSTRACT

BACKGROUND: Plasticity of the developing motor tracts is a contributor to recovery of motor function after pediatric stroke. The mechanism of these plastic changes may be functional and/or structural in nature. The corticospinal tract (CST) represents the major pathway responsible for voluntary movement. Stroke-induced damage to the CST as well as to other motor tracts leads to motor deficits which may show favorable functional recovery particularly in the pediatric population. METHODS: We report the case of a 3-year-old girl demonstrating reorganization of the pyramidal tracts after an extensive left MCA territory stroke secondary to head trauma. Reorganization is characterized using serial diffusion tensor imaging (DTI) of the pyramidal tracts which contain the CST. RESULTS: Imaging shows decreased ipsi-lesional fractional anisotropy (FA) suggestive of Wallerian degeneration and increased contralesional FA. CONCLUSIONS: These results point to plastic reorganization of the pyramidal tract post-stroke and the utility of DTI in recognizing these changes.


Subject(s)
Diffusion Tensor Imaging , Pyramidal Tracts/pathology , Pyramidal Tracts/physiopathology , Stroke/pathology , Anisotropy , Child, Preschool , Female , Humans , Middle Cerebral Artery/pathology , Wallerian Degeneration/etiology
13.
Clin Imaging ; 97: 22-27, 2023 May.
Article in English | MEDLINE | ID: mdl-36871361

ABSTRACT

OBJECTIVE: Normal pressure hydrocephalus (NPH) is a neurodegenerative disease that is potentially reversible by shunt surgery in approximately 60% of patients. Imaging may provide a means to investigate brain tissue viability and oxygen metabolism in NPH patients. METHODS: Oxygen extraction fraction (OEF) mapping was generated from 3D multi-echo gradient echo MRI (mGRE) data using QQ-CCTV algorithm and cerebral blood flow (CBF) using 3D arterial spin labeling (ASL) MRI data, thereby calculating the cerebral metabolic rate of oxygen (CMRO2 = CBF × OEF × [H]a) in 16 NPH patients. Regression analyses using cortical gray matter and deep gray matter regions were conducted with age, gender, CSF stroke volume and normalized ventricular volume as independent variables. RESULTS: OEF showed significant negative correlations with normalized brain ventricular volumes in the whole brain (p = 0.004, q = 0.01), cortical gray matter (p = 0.004, q = 0.01), caudate (p = 0.02, q = 0.04), and pallidum (p = 0.03, q = 0.04), but no significant correlation with CSF stroke volume (q > 0.05). There was no significant finding with CBF or CMRO2. CONCLUSION: In NPH patients, low OEF in several regions was significantly correlated with large ventricular volumes, indicating decreased tissue oxygen metabolism with increased NPH severity. OEF mapping may provide a functional understanding of neurodegeneration in NPH and may improve monitoring of disease course and treatment outcomes.


Subject(s)
Hydrocephalus, Normal Pressure , Neurodegenerative Diseases , Humans , Oxygen , Hydrocephalus, Normal Pressure/diagnostic imaging , Hydrocephalus, Normal Pressure/surgery , Hydrocephalus, Normal Pressure/metabolism , Brain/diagnostic imaging , Brain/metabolism , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebrovascular Circulation
14.
medRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37808826

ABSTRACT

Quantification of the myelin content of the white matter is important for studying demyelination in neurodegenerative diseases such as Multiple Sclerosis (MS), particularly for longitudinal monitoring. A novel noninvasive MRI method, called Microstructure-Informed Myelin Mapping (MIMM), is developed to quantify the myelin volume fraction (MVF) by utilizing a multi gradient echo sequence (mGRE) and a detailed biophysical model of tissue microstructure. Myelin is modeled as anisotropic negative susceptibility source based on the Hollow Cylindrical Fiber Model (HCFM), and iron as isotropic positive susceptibility source in the extracellular region. Voxels with a range of biophysical parameters are simulated to create a dictionary of MR echo time magnitude signals and total susceptibility values. MRI signals measured using a mGRE sequence are then matched voxel-by-voxel to the created dictionary to obtain the spatial distributions of myelin and iron. Three different MIMM versions are presented to deal with the fiber orientation dependent susceptibility effects of the myelin sheaths: a basic variation, which assumes fiber orientation is an unknown to fit, two orientation informed variations, which assume the fiber orientation distribution is available either from a separate diffusion tensor imaging (DTI) acquisition or from a DTI atlas based fiber orientation map. While all showed a significant linear correlation with the reference method based on T2-relaxometry (p < 0.0001), DTI orientation informed and atlas orientation informed variations reduced overestimation at white matter tracts compared to the basic variation. Finally, the implications and usefulness of attaining an additional iron susceptibility distribution map are discussed. Highlights: novel stochastic matching pursuit algorithm called microstructure-informed myelin mapping (MIMM) is developed to quantify Myelin Volume Fraction (MVF) using Magnetic Resonance Imaging (MRI) and microstructural modeling.utilizes a detailed biophysical model to capture the susceptibility effects on both magnitude and phase to quantify myelin and iron.matter fiber orientation effects are considered for the improved MVF quantification in the major fiber tracts.acquired myelin and iron maps may be utilized to monitor longitudinal disease progress.

15.
J Neuroimaging ; 32(1): 48-56, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34664747

ABSTRACT

BACKGROUND AND PURPOSE: The white matter lesion central vein sign (CVS) is an emerging biomarker for multiple sclerosis (MS) differential diagnosis. Currently, CVS is detected on susceptibility weighted imaging (SWI) with suboptimal contrast. We developed an imaging method called susceptibility relaxation optimization (SRO) to improve CVS visualization. METHODS: This was a retrospective study of MS patients who had MRI in June 2018 with routine 3D multiecho gradient echo (GRE) and T2-weighted fluid-attenuated inversion recovery (FLAIR) sequences. SRO and SWI images were reconstructed from GRE data. MS lesions were identified on FLAIR image. The CVS detection rate, the image quality score of CVS conspicuity (range 0-3), and central vein-to-lesion contrast were compared between SRO and SWI images. RESULTS: In 20 MS patients (mean age 45 ± 9 years; 15 women), SRO significantly increased CVS detection rate compared to SWI (53.3%, 274/514 vs. 32.9%, 169/514; p<.001, McNemar's test). The median image quality score for SRO was 2 compared to 1 for SWI (p<.001, Wilcoxon signed-rank test). The median overall image quality score for SRO was 7 compared to 6 for SWI (p = .003; Wilcoxon signed-rank test). Central vein-to-lesion contrast was 0.12 ± 0.12 in SRO compared to 0.031 ± 0.075 in SWI (p<.001, t-test). CONCLUSIONS: SRO yields better central vein contrast and increases CVS detection rate compared to SWI.


Subject(s)
Multiple Sclerosis , Adult , Brain/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Multiple Sclerosis/pathology , Retrospective Studies , Veins/pathology
16.
J Neuroimaging ; 32(1): 141-147, 2022 01.
Article in English | MEDLINE | ID: mdl-34480496

ABSTRACT

BACKGROUND AND PURPOSE: The objective ofthis study was to demonstrate a global cerebrospinal fluid (CSF) method for a consistent and automated zero referencing of brain quantitative susceptibility mapping (QSM). METHODS: Whole brain CSF mask was automatically segmented by thresholding the gradient echo transverse relaxation ( R2∗) map, and regularization was employed to enforce uniform susceptibility distribution within the CSF volume in the field-to-susceptibility inversion. This global CSF regularization method was compared with a prior ventricular CSF regularization. Both reconstruction methods were compared in a repeatability study of 12 healthy subjects using t-test on susceptibility measurements, and in patient studies of 17 multiple sclerosis (MS) and 10 Parkinson's disease (PD) patients using Wilcoxon rank-sum test on radiological scores. RESULTS: In scan-rescan experiments, global CSF regularization provided more consistent CSF volume as well as higher repeatability of QSM measurements than ventricular CSF regularization with a smaller bias: -2.7 parts per billion (ppb) versus -0.13 ppb (t-test p<0.05) and a narrower 95% limits of agreement: [-7.25, 6.99] ppb versus [-16.60, 11.19 ppb] (f-test p<0.05). In PD and MS patients, global CSF regularization reduced smoothly varying shadow artifacts and significantly improved the QSM quality score (p<0.001). CONCLUSIONS: The proposed whole brain CSF method for QSM zero referencing improves repeatability and image quality of brain QSM compared to the ventricular CSF method.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
17.
J Cereb Blood Flow Metab ; 42(2): 338-348, 2022 02.
Article in English | MEDLINE | ID: mdl-34558996

ABSTRACT

We aimed to demonstrate the feasibility of whole brain oxygen extraction fraction (OEF) mapping for measuring lesion specific and regional OEF abnormalities in multiple sclerosis (MS) patients. In 22 MS patients and 11 healthy controls (HC), OEF and neural tissue susceptibility (χn) maps were computed from MRI multi-echo gradient echo data. In MS patients, 80 chronic active lesions with hyperintense rim on quantitative susceptibility mapping were identified, and the mean OEF and χn within the rim and core were compared using linear mixed-effect model analysis. The rim showed higher OEF and χn than the core: relative to their adjacent normal appearing white matter, OEF contrast = -6.6 ± 7.0% vs. -9.8 ± 7.8% (p < 0.001) and χn contrast = 33.9 ± 20.3 ppb vs. 25.7 ± 20.5 ppb (p = 0.017). Between MS and HC, OEF and χn were compared using a linear regression model in subject-based regions of interest. In the whole brain, compared to HC, MS had lower OEF, 30.4 ± 3.3% vs. 21.4 ± 4.4% (p < 0.001), and higher χn, -23.7 ± 7.0 ppb vs. -11.3 ± 7.7 ppb (p = 0.018). Our feasibility study suggests that OEF may serve as a useful quantitative marker of tissue oxygen utilization in MS.


Subject(s)
Brain , Cerebrovascular Circulation , Magnetic Resonance Imaging , Multiple Sclerosis , Oxygen Consumption , Oxygen/metabolism , Adult , Brain/blood supply , Brain/diagnostic imaging , Brain/metabolism , Brain Mapping , Female , Humans , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/metabolism , Retrospective Studies
18.
J Neuroimaging ; 32(4): 697-709, 2022 07.
Article in English | MEDLINE | ID: mdl-35294075

ABSTRACT

BACKGROUND AND PURPOSE: We investigated the effects of aging, white matter hyperintensities (WMH), and cognitive impairment on brain iron levels and cerebral oxygen metabolism, known to be altered in Alzheimer's disease (AD), using quantitative susceptibility mapping and MR-based cerebral oxygen extraction fraction (OEF). METHODS: In 100 individuals over the age of 50 (68/32 cognitively impaired/intact), OEF and neural tissue susceptibility (χn ) were computed retrospectively from MRI multi-echo gradient echo data, obtained on a 3 Tesla MRI scanner. The effects of age and WMH on OEF and χn were assessed within groups, and OEF and χn were assessed between groups, using multivariate regression analyses. RESULTS: Cognitively impaired subjects were found to have 19% higher OEF and 34% higher χn than cognitively intact subjects in the cortical gray matter and several frontal, temporal, and parietal regions (p < .05). Increased WMH burden was significantly associated with decreased OEF in the cognitively impaired, but not in the cognitively intact. Older age had a stronger association with decreased OEF in the cognitively intact group. Both older age and increased WMH burden were significantly associated with increased χn in temporoparietal regions in the cognitively impaired. CONCLUSIONS: Higher brain OEF and χn in cognitively impaired older individuals may reflect altered oxygen metabolism and iron in areas with underlying AD pathology. Both age and WMH have associations with OEF and χn but are modified by the presence of cognitive impairment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Aged , Alzheimer Disease/pathology , Brain/pathology , Cognitive Dysfunction/pathology , Humans , Iron , Magnetic Resonance Imaging/methods , Oxygen/metabolism , Retrospective Studies , White Matter/pathology
19.
iScience ; 23(10): 101553, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33083722

ABSTRACT

Adaptive Total Field Inversion is described for quantitative susceptibility mapping (QSM) reconstruction from total field data through a spatially adaptive suppression of shadow artifacts through spatially adaptive regularization. The regularization for shadow suppression consists of penalizing low-frequency components of susceptibility in regions of small susceptibility contrasts as estimated by R2∗ derived signal intensity. Compared with a conventional local field method and two previously proposed regularized total field inversion methods, improvements were demonstrated in phantoms and subjects without and with hemorrhages. This algorithm, named TFIR, demonstrates the lowest error in numerical and gadolinium phantom datasets. In COSMOS data, TFIR performs well in matching ground truth in high-susceptibility regions. For patient data, TFIR comes close to meeting the quality of the reference local field method and outperforms other total field techniques in both clinical scores and shadow reduction.

20.
J Neuroimaging ; 30(1): 65-75, 2020 01.
Article in English | MEDLINE | ID: mdl-31625646

ABSTRACT

BACKGROUND AND PURPOSE: Ultrahigh-field 7T promises more than doubling the signal-to-noise ratio (SNR) of 3T for magnetic resonance imaging (MRI), particularly for MRI of magnetic susceptibility effects induced by B0 . Quantitative susceptibility mapping (QSM) is based on deconvolving the induced phase (or field) and would therefore benefit substantially from 7T. The purpose of this work was to compare QSM performance at 7T versus 3T in an intrascanner test-retest experiment with varying echo numbers (5 and 10 echoes). METHODS: A prospective study in N = 10 healthy subjects was carried out at both 3T and 7T field strengths. Gradient echo data using 5 and 10 echoes were acquired twice in each subject. Test-retest reproducibility was assessed using Bland-Altman and regression analysis of region of interest measurements. Image quality was scored by an experienced neuroradiologist. RESULTS: Intrascanner bias was below 3.6 parts-per-billion (ppb) with correlation R2 > .85. Interscanner bias was below 10.9 ppb with correlation R2 > .8. The image quality score for the 3T 10 echo protocol was not different from the 7T 5 echo protocol (P = .65). CONCLUSION: Excellent image quality and good reproducibility was observed. 7T allows equivalent image quality of 3T in half of the scan time.


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Prospective Studies , Reproducibility of Results , Signal-To-Noise Ratio , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL