Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
PLoS Pathog ; 20(7): e1012395, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39074142

ABSTRACT

Plant-parasitic nematodes constrain global food security. During parasitism, they secrete effectors into the host plant from two types of pharyngeal gland cells. These effectors elicit profound changes in host biology to suppress immunity and establish a unique feeding organ from which the nematode draws nutrition. Despite the importance of effectors in nematode parasitism, there has been no comprehensive identification and characterisation of the effector repertoire of any plant-parasitic nematode. To address this, we advance techniques for gland cell isolation and transcriptional analysis to define a stringent annotation of putative effectors for the cyst nematode Heterodera schachtii at three key life-stages. We define 717 effector gene loci: 269 "known" high-confidence homologs of plant-parasitic nematode effectors, and 448 "novel" effectors with high gland cell expression. In doing so we define the most comprehensive "effectorome" of a plant-parasitic nematode to date. Using this effector definition, we provide the first systems-level understanding of the origin, deployment and evolution of a plant-parasitic nematode effectorome. The robust identification of the effector repertoire of a plant-parasitic nematode will underpin our understanding of nematode pathology, and hence, inform strategies for crop protection.


Subject(s)
Host-Parasite Interactions , Plant Diseases , Animals , Plant Diseases/parasitology , Tylenchoidea/genetics , Plants/parasitology , Helminth Proteins/genetics , Helminth Proteins/metabolism , Nematoda/genetics
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38366574

ABSTRACT

Plant-parasitic nematodes are one of the most economically important pests of crops. It is widely accepted that horizontal gene transfer-the natural acquisition of foreign genes in parasitic nematodes-contributes to parasitism. However, an apparent paradox has emerged from horizontal gene transfer analyses: On the one hand, distantly related organisms with very dissimilar genetic structures (i.e. bacteria), and only transient interactions with nematodes as far as we know, dominate the list of putative donors, while on the other hand, considerably more closely related organisms (i.e. the host plant), with similar genetic structure (i.e. introns) and documented long-term associations with nematodes, are rare among the list of putative donors. Given that these nematodes ingest cytoplasm from a living plant cell for several weeks, there seems to be a conspicuous absence of plant-derived cases. Here, we used comparative genomic approaches to evaluate possible plant-derived horizontal gene transfer events in plant parasitic nematodes. Our evidence supports a cautionary message for plant-derived horizontal gene transfer cases in the sugar beet cyst nematode, Heterodera schachtii. We propose a 4-step model for horizontal gene transfer from plant to parasite in order to evaluate why the absence of plant-derived horizontal gene transfer cases is observed. We find that the plant genome is mobilized by the nematode during infection, but that uptake of the said "mobilome" is the first major barrier to horizontal gene transfer from host to nematode. These results provide new insight into our understanding of the prevalence/role of nucleic acid exchange in the arms race between plants and plant parasites.


Subject(s)
Plants , Tylenchoidea , Animals , Plants/genetics , DNA , Genomics , Tylenchoidea/genetics , Plant Diseases/parasitology
3.
ACS Sustain Chem Eng ; 11(45): 16074-16086, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38022740

ABSTRACT

This study presents a proof of concept for the recovery of phosphate from aqueous solutions with high phosphorus (PO4-P) initial contents to simulate the concentration of streams from decentralized wastewater systems. Solutions with ∼500 ppm phosphorus enable phosphate adsorption and recovery, in contrast to the highly diluted inlet streams (<10 ppm) from centralized wastewater treatment plants. In this work, Mg-Fe layered double hydroxide is used as a phosphate adsorbent, demonstrating its separation from aqueous streams, recovery, and use as a fertilizer following the principles of circular economy. We demonstrate that the mechanism of phosphate adsorption in this material is by a combination of surface complexation and electrostatic attraction. After the loss of crystallinity in the presence of water in the first cycle and its associated decrease in adsorption capacity, the Mg-Fe layered double hydroxide (LDH) is stable after consecutive adsorption/desorption cycles, where desorption solutions were reused to substantially increase the final phosphate concentration demonstrating the recyclability of the material in a semicontinuous process. Phosphate recovered in this way was used to complement phosphate-deficient plant growth medium, demonstrating its efficacy as a fertilizer and thereby promoting a circular and sustainable economy.

4.
Plant Methods ; 18(1): 134, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503537

ABSTRACT

BACKGROUND: Cyst nematodes are one of the major groups of plant-parasitic nematode, responsible for considerable crop losses worldwide. Improving genetic resources, and therefore resistant cultivars, is an ongoing focus of many pest management strategies. One of the major bottlenecks in identifying the plant genes that impact the infection, and thus the yield, is phenotyping. The current available screening method is slow, has unidimensional quantification of infection limiting the range of scorable parameters, and does not account for phenotypic variation of the host. The ever-evolving field of computer vision may be the solution for both the above-mentioned issues. To utilise these tools, a specialised imaging platform is required to take consistent images of nematode infection in quick succession. RESULTS: Here, we describe an open-source, easy to adopt, imaging hardware and trait analysis software method based on a pre-existing nematode infection screening method in axenic culture. A cost-effective, easy-to-build and -use, 3D-printed imaging device was developed to acquire images of the root system of Arabidopsis thaliana infected with the cyst nematode Heterodera schachtii, replacing costly microscopy equipment. Coupling the output of this device to simple analysis scripts allowed the measurement of some key traits such as nematode number and size from collected images, in a semi-automated manner. Additionally, we used this combined solution to quantify an additional trait, root area before infection, and showed both the confounding relationship of this trait on nematode infection and a method to account for it. CONCLUSION: Taken together, this manuscript provides a low-cost and open-source method for nematode phenotyping that includes the biologically relevant nematode size as a scorable parameter, and a method to account for phenotypic variation of the host. Together these tools highlight great potential in aiding our understanding of nematode parasitism.

SELECTION OF CITATIONS
SEARCH DETAIL